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 Recently, many fully-homomorphic encryption schemes have been 

constructed. However, the issue of the security of these fully 

homomorphic encryptions has not been carefully studied. By using 

lattice reduction algorithm, we firstly present an attack on the fully 

homomorphic encryption based on approximate GCD over the 

integers. Our result shows that the FHE in [4] is not secure for some 

parameter settings. Then, we define approximate matrix GCD 

problem, which is a generalization of approximate GCD. Finally, we 

construct an improvement FHE scheme based on approximate matrix 

GCD to avoid the lattice attack in this paper. 
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1. INTRODUCTION 

Rivest, Adleman and Dertouzos [1] introduced a notion of privacy homomorphism. But until 2009, 

Gentry [2] constructed the first fully homomorphic encryptions based on ideal lattice, all previous schemes 

are insecure. Following the breakthrough of [2], there is currently great interest on fully-homomorphic 

encryptions [3-12]. In these schemes, the simplest one is certainly the one of van Dijk, Gentry, Halevi and 

Vaikuntanathan [4]. The public key of this scheme is a list of approximate multiples  
1

2
i i i i

x q p r



   for 

an odd integer p , where 
i

q ,
i

r  is the uniform random integers over Z  such that 
1

2
i

r
 

 . The secret key 

is p . To encrypt a message bit m , the ciphertext is evaluated as 
, [ ]

2
ii T T

c x r m
 

   , where 

1
2r

 
 . To decrypt a ciphertext, compute the message bit   m o d 2

p
m c , where  

p
c  is an integer in 

( / 2 , / 2 )p p . 

To conveniently compare, we simply describe the known attacks considering in Section 5 and 

appendix B in [4]. Section 5 in [4] considered known attacks on the AGCD problem for two numbers 

0 1
( , )x x  and many numbers 

0
( , , )

t
x x . These attacks mainly discussed how to solve approximate GCD 

problem, i.e. the secret key p .  

The appendix B.1 in [4] analyzed Nguyen and Stern’s orthogonal lattice attack. Given 

0
( , .. . , )

t
x x x p q r   , where 

0
( , . . . , )

t
q q q  and 

0
( , .. . , )

t
r r r , consider a t -dimensional lattice 
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x
L


 of integer vectors orthogonal to x . It is easy to verify that any vector that is orthogonal to both q  and 

r , is in the lattice 
,q r

L


, it is also in 
x

L


. According to [4], the idea of attack is to reduce 
x

L


 to recover 

1t   linearly independent vectors of 
,q r

L


, and further recover q  and r , and p . Then [4] discussed when 

/ ( )t     , the lattice reduction algorithm can not find a 2
 

 approximate short vector in 
,q r

L


 on the 

worst-case.  

Dijk et al. [4] also analyzed a similar attack by using the constraint 0 m o d
i i

x r p  , which 

paid close attention to how to solve for r . [4] considered a following lattice. 

1 1

2 2

t t

x R

x R
M

x R

 

 

 
 

 

 

. 

But one needs to find t  linearly independent short vectors of the lattice M  to obtain the success of this 

attack. That is, each 
1

l  norm among t  vectors is at most / 2p . When t  is large, solving these vectors is 

very difficult by using lattice reduction algorithm. 

Instead of applying linear system 0 m o d
i i

x r p  , Coppersmith’s method looks at quadratic 

system 
2 2

( ) 0 m o d
i i

x r p   and 
2

( )( ) 0 m od
i i j j

x r x r p   , etc, and finds one of the 
i

r  and thereof 

p  and all other 
i

r ’s by solving some small vectors in new lattices. 

In a word, the attacks considering in Section 5 and appendix B in [4] is how to recover the secret 

key p , and the security analysis depends on the worst-case performance of the currently known lattice 

reduction algorithms.  

The lattice in this paper is very similar to the lattice M . However, our attack only requires find one 

short vector with certain condition, and not to solve t  short vectors. Moreover, our attack merely recovers 

the plaintext bit from a ciphertext and depends upon the average-case performance of the lattice reduction 

algorithms. On the other hand, if suppose 
0

( , , . . . , ) 2
t

x c x x p q r m     with a ciphertext c , then our 

attack in some sense is similar to solving a short vector of orthogonal lattice 
q

L


, which is different from the 

lattices 
x

L


 or 
,q r

L


 considering in Section 5 and appendix B in [4]. 

Currently, many fully-homomorphic encryption schemes [2-12] have been designed. However, the issue of 

the security of these fully homomorphic encryptions has not been carefully studied. Chen and Nguyen [18] 

presented a 
3 / 2

2


 time algorithm for the AGCD problem, which is improved to 2


 time in [11]. In 

[13], Gu and Gu proved that the FHEs in [3, 6] are not secure for the practical parameter settings by using 

lattice reduction algorithm. Our main observation is that one can directly obtain the plaintext from a 

ciphertext by using lattice reduction algorithm, without using the secret key for some parameter settings of 

the FHE in [4]. Our attack is different from the known attacks considering in [4]. Because the attacks they 

considered are to solve the secret key. So, our result shows the FHE in [4] is not secure for some practical 

parameters. Section 2 gives some notations and definitions, and the lattice reduction algorithms. Section 3 

constructs a new lattice based on the public key, and presents a polynomial time algorithm to directly obtain 

the plaintext from a ciphertext. Section 4 presents an improvement FHE scheme. Section 5 concludes this 

paper. 

 

2. Preliminaries  

2.1 Notations 

In this paper, we follow the parameter setting of [4]. Let   be a security parameter, 

[ ] {1, ..., }   be a set of integers. Let   be bit-length of the integers in the public key,   the bit-length 

of the secret key,   the bit-length of the noise, and   the number of integers in the public key. To 

conveniently describe, we concretely set   , 
2

4  , 
5

  , and      throughout this paper. 
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2.2 Lattice Reduction Algorithm 

Given a basis of the lattice 
1
, . . . ,

n
b b , one of the most famous problems of the algorithm theory of 

lattices is to find a short nonzero vector. Currently, there is no polynomial time algorithm for solving a 

shortest nonzero vector in a given lattice. The most celebrated LLL reduction finds a vector whose 

approximating factor is at most 
( 1) / 2

2
n 

. In 1987, Schnorr [14] introduced a hierarchy of reduction concepts 

that stretch from LLL reduction to Korkine-Zolotareff reduction which obtains a polynomial time algorithm 

with 
2 / 2

( 4 )
n k

k  approximating factor for lattices of any rank. The running time of Schnorr’s algorithm is 

poly(size of basis)*HKZ(2k), where HKZ(2k) is the time complexity of computing a 2k-dimensional HKZ 

reduction, and equal to 
/ 2 ( )

( )
k o k

O k


. If we use the probabilistic AKS  algorithm [15], HKZ(2k) is about 

2
( 2 )

k
O .  

Theorem 2.1 (Theorem 2.6 [14]) Every block 2 k -reduced basis 
1
, . . . ,

m k
b b  of lattice L  satisfies 

1

2

1 1
( )

m

k k
b L  



 , where 
k

  is another lattice constant using in Schnorr’s analysis of his algorithm. 

Shnorr [13] showed that 
2

4
k

k  , and Ajtai improved this bound to 
k

k


   for some positive number 

0  . Recently, Gama Howgrave, Koy and Nguyen [16] improved the approximation factor of the 

Schnorr’s 2k-reduction to  
( 3 1) / 4 / 2 1

1 1
/ ( ) (4 / 3)

k n k

k k
b L  

 
 , and proved the following result via 

Rankin’s constant. 

Theorem 2.2 (Theorem 2, 3 [16]) For all 2k  , Schnorr’s constant 
k

  satisfies: 

2 ln 2 1 /
/ 1 2 (1 / 2 )

k

k
k k


   . Asymptotically it satisfies 

2 ln 2 1 /
0 .1

k

k
k


  . In particular, 

1 .1

k
k   

for all 100k  . 

Theorem 2.3 ([17]). For lattice L , the first vector 
1

b  output by LLL is satisfied to the ratio 

1
/ ( ) (1 .02)

n
b L   on the average. 

 

3. Lattice Attack on FHE 

To simplicity, we first refer the FHE in [4], then construct a new lattice based on the public key and 

an arbitrary ciphertext to recover the plaintext from the ciphertext by applying LLL lattice reduction 

algorithm. 

 

3.1.  Fully Homomorphic Encryption  

KeyGen(  ). The secret key is a random odd  -bit integer: 
1

( 2 1) [ 2 , 2 )p
  

  . 

Select 
0

, . . . , [ 0 , 2 / )q q p





  with the largest odd integer 

0
q . Select 

0
, . . . , [ 2 , 2 ]r r

 




  , compute 

0 0 0
2x q p r   and  

0

2
i i i x

x q p r   for [ ]i  . Output the 

public key 
0 1

, , . . . ,p k x x x


   and the secret key sk p  . 

Encrypt( p k , {0 ,1}m  ). Select a random subset [ ]T   and [ 2 , 2 ]r
 

  , and 

output ciphertext 
0

2
ii T x

c m r x


   
  . 

Decrypt( ,sk c ). Output  
2

'
p

m c 
 

. 

To implement fully homomorphic encryption scheme, [4] applied the Gentry’s standard 

bootstappable technique. 

 

3.2.  Lattice Attack Based on the Public Key  

 Given a list of approximate multiples of p :  

0
{ : [0 , 2 / ) , ( 2 , 2 )}

i i i i i i
x q p r q p r

   


     , find p . 
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Dijk et al. [4] showed that the security of the FHE is equivalent to solving the approximate GCD 

problem. Chen and Nguyen [18] presented a new AGCD algorithm running in 
3 / 2

2


 polynomial-time 

operations, which is essentially the 3 / 4 -th root of that of GCD exhaustive search. 

According to FHE, we know that an arbitrary ciphertext has the form 2c q p r m   . The ideal 

of attack is very simple, that is, one is how to remove qp  in c  by adding small noise. When completing 

this, it is easy to recover the plaintext bit m  in c . To do this, we define following Diophantine inequality 

equation problem. 

Definition 3.1. (Diophantine Inequality Equation (DIE)). Given a list of integers 

0
{ : [0 , 2 / ) , ( 2 , 2 )}

i i i i i i
x q p r q p r

   


     , solve the Diophantine inequality equation 

0
/ 8

i ii
y x p




  subject to / (8 2 )

i
y p


  and at least one non-zero 

i
y . 

Suppose there is an oracle to solve DIE, then one can obtain the plaintext bit in an arbitrary 

ciphertext of FHE [4]. Since / (8 2 )
i

y p


 , 
0

/ 8
i ii

y r p



 , that is, 

0 i ii
y x



  is only the sum of 

noise terms, without non-zero multiple of p . So, one can correctly decide the plaintext bit of a ciphertext 

according to the parity of 
0 i ii

y x


 . 

However, it is not difficult to see that DIE is a generalization of the knapsack problem. So, there is 

unlikely an efficient algorithm for DIE unless P=NP. However, this does not mean that there is not a 

polynomial time algorithm for special DIE. 

Given the public key 
0 1

, , . . . ,p k x x x


   and a ciphertext c , we randomly choose a subset T  

from [ ]  such that 
3

T  . Without generality of loss, assume 
3

[ ]T   and 2c q p r m    with 

2 2r


 . We construct a new lattice L  as follows: 

3

1

0

0 0 0

1 0 0

0 1 0

0 0 1

c

x

L

x

x



 

 


 

 

 
 

 
 

,

3

1

1

0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

c

x

L

x

x



 

 


 

 

 
 

 
 

. 

On the one hand, the size of the shortest vector of lattice L  is less than 
3

21 / ( 2 )3
2 2c

 




   

according to the parameter setting. On the other hand, there is a non-zero solution 
3

2

0
2

i ii
y x yc

 


   

with 
2

2
i

y


  and 
2

2y


  by using pigeon hole principle. This is because 
5

, 2
i

c x


 , the number of 

all distinct ,
i

y y  subject to 
2

, 2
i

y y


  is 
2 3 5

2
(2 ) 2

  
 , that is, there is at least a non-zero solution 

for the equation 
3

2

0
2

i ii
y x yc

 


  . Thus, if one finds a non-zero small solution vector, then one gets 

the plaintext bit with probability at least 1/2 ( y  is an odd integer). 

To conveniently decide, we use a variant lattice 
1

L  of L , and call LLL algorithm for lattice 
1

L . 

Assume 30 1 1
( , , . . . , )b b b b

 
  is the first vector of the 

1
L ’s basis output by LLL. If 

3
/ (8 2 )b p





  

and 
1

m o d ( , 2 ) 1b  , then 
0

m o d ( , 2 )m b . In our experiment, we notice that 
1

b  may be an even integer, 

but the several vectors following the first vector (such as the second vector, or the third vector, et al.) often 

satisfy the above condition. That is, the first coordinate of vector is odd and its norm is small. So, as long as 

one gets one solution of the above form, one can correctly decide the plaintext bit. In fact, LLL can also be 

called many times for distinct subset T . So, we have the following result by applying the block lattice 

reduction. 
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Theroem 3.1. Suppose the parameters of FHE [4] 100  ,   , 
2

5  , 
5

  , and 

    , then there is a running time 2 , ( 1)


   algorithm recovering plaintext from ciphertext. 

Proof: According to Theorem 2.1, 2.2, we know 
( 3 1) / 4 / 2 1

1 1
/ ( ) (4 / 3)

k n k

k k
b L  

 
  and 

1 .1

k
k   for all 100k  . If we choose 

3
,k n   , then 

3 2 2
1 .1 / 2 3 .6 6 4 .6 6

1 1 1
( ) 2 ( ) 2 2b L L

    
  


     . By using AKS algorithm [15, 19], solving each 

block sub-lattice costs time 2 , 1


  , and the number of blocks is at most 
(1)O

 . So, the total running 

time of algorithm is 2 , 1


  .■ 

The cost 2 , 1


   breaking FHE in [4] is smaller than 
1 .5

2


 in [18]. 

Theorem 3.2. Suppose the average-case performance of LLL is true, namely, Theorem 1.3 holds. 

Then, for the parameters 100  ,   , 
2

4  , 
5

  , and     , the FHE in [4] is 

insecure. 

Proof: For the above lattice 
1

L , we have  

3 2

2 2

2 1 0 0 2

1 1

4

1

(1 .0 2 ) ( ) (1 .0 2 ) ( )

7 .2 ( ) 2

b L L

L

 

 

 



 
 

  

.■ 

Moreover, we verify for 3, 4 , ...,1 0   the correctness and the efficiency of attack by 

computational experiment applying NTL [20]. 

 
4. Improvement of FHE [4] 

The reason why the lattice attack is successful is that the secret key p  is a large integer. If we 

replace p  by a matrix, then the above attack dose not work. 

Before giving improvement scheme, we firstly define approximate matrix GCD problem over the 

integers, which is a generalization of approximate GCD problem.  

Definition 4.1 (approximate matrix GCD over the integers). Given a list matrices 
2 2

2
i i i p

B R A r I


   , 
 
where 

2 2

i p
R


 , d e t( )A p , 

i
r  is a small integer, I  is identity matrix, find 

the matrix A . 
 

4.1 Construction 

Key Generating Algorithm (KeyGen) 

(1) Select a random matrix 
2 2

T Z


  with 
2

( )
2

O
T




  such that 

2
( )

det( ) 2
O

p T


   

and m o d 2 1p  . Compute 
2 2

A Z


  with A T p I , where I  is identity matrix. 

(2) Generate ( lo g )O    matrices  
1

( 2 ) m o d
i i i i

B R A r I p



  , where 

2 2

i p
R


  is an uniformly random matrix and 2

i
r


  and 

i
r  is integer. 

(3) Output the public key ( , , [ ])
i

p k p B i    and the secret key ( , )sk p T . 

Encryption Algorithm (Enc)  

Given the public key p k  and a bit {0 ,1}m  . Evaluate ciphertext 

[ ]
( ( 2 ) ) m o d

i ii
C k B m r I p


    where 2

i
k


  and r  is integer. 

Add Operation (Add) 

Given the public key p k  and ciphertexts 
1 2
,C C , output new ciphertext 

1 2
( ) m o dC C C p  . 

Multiplication Operation (Mul)  
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Given the public key p k  and ciphertexts 
1 2
,C C , output new ciphertext 

1 2
( ) m o dC C C p  . 

Decryption Algorithm (Dec)  

Given the secret key sk  and ciphertext C , decipher ( ) m o d m o d 2M C T p  , and the 

plaintext m  is the element 
1,1

m M  of the first row and the first column of M . 

It is not difficult to verify that the improvement scheme is a somewhat homomorphic encryption. 

Now, one may use the Gentry’s standard bootstrappable technique to implement fully homomorphic 

encryption. 

In addition, we can also choose two random primes 
2

( )
, 2

O
p q


  with 

2 2
p a b   i.e. 

1 m o d 4p  . Set n pq  and 
a b

T
b a

 
  

 

, 
a b

A
b a

 
  
 

 with 
0

0

p
A T p I

p

 
  
 

. Now, we 

can replace p  with n pq , and use this matrix A  to generate the public key ( , , [ ])
i

p k n B i   . We 

observe that the security of this modification depends on the hardness of factoring n pq . 

 

4.2 Efficiency and Security 

Efficiency. The size of the public key is 
3

( lo g )O   , the size of the secret key is 
2

( )O  , the 

expansion rate of ciphertext to plaintext is 
2

( )O  . To implement FHE, one only needs to add ciphertexts of 

the secret key to the public key. 

Security. Currently, we can not reduce the security of the improvement scheme to the approximate 

matrix GCD problem. So, we suppose that the approximate matrix GCD problem is hard in this paper. In the 

following, we only consider another possible attack for the scheme. 

It is not feasible to use brute force attack by guessing noise term r  because (2 )r O


 . A 

possible attack is to solve the following equation 

1 1

2 2

m o d

m o d

m o d

T B r T p

T B r T p

T B r T p
 










 

 

However this system consists of quadratic equations when 
i

r  is unknown. So, to solve this equation, 

we also require to guess 
i

r . As well as we know, attacking this scheme is not feasible by using algebraic 

equation method. 

Moreover, this scheme can also avoid the attack in this paper because 
i

B  is an approximate 

multiple of the secret key A . 

 

5. Conclusion 

This paper presents a lattice attack for the FHE in [4] by directly calling LLL algorithm. This attack 

mainly recovers plaintext from ciphertext. Our result shows that the FHE is not secure for some parameter 

settings in [4]. According to our experiment, the lattice attack can be avoided by taking larger parameter 
6

  . But, the scheme is less practical in this case. 

Avoid the above lattice attack, we present an improvement FHE scheme based on approximate 

matrix GCD over the integers. However, we do not know the hardness of approximate matrix GCD problem. 

Thus, the security of the improvement FHE scheme remains open. 
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