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 A study has been carried out using MODTRAN 4.0 radiative transfer code 

simulations to calculate the brightness temperatures expected at the 

Advanced Very High Resolution Radiometer (AVHRR) on board the 

National Oceanic and Atmospheric Administration NOAA satellites series 

(7, 9, 11, 12, 14, 15, 16, 17, 18 and 19) by using Gaussian Referential Filter 

(GRF) and Gaussian Filter (GF) instead of filter Normalized Filter obtained 

from NOAA agency. The outputs of applying MODTRAN 4.0 are values of 

atmospheric parameters obtained by mathematical convolution using GRF 

and GF Filters. A detailed analysis of the total error in LST, Total(Ts), in 

function of AVHRR/NOAA satellites, shows that the algorithms are able to 

estimate accurate LST between a minimum of 1.256 K and a maximum of 

1.415 K with amplitude of about 0.159 K. The validations show also that the 

algorithms are capable to produce LST with a standard deviation lower than 

1.554 K and a Root Mean Square Error (RMSE) lower than 1.558 K. This 

result gives the opportunity to use the filter GF instead of filter Normalized 

Filter obtained from NOAA agency, in other studies by creation of GF filters 

centered in any region of the electromagnetic. 
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1. INTRODUCTION 

Land Surface Temperature (LST) is one of the most key parameters in the physics of land surface 

processes, combining surface atmosphere interactions and the energy fluxes between the atmosphere and the 

ground surface [1-4].  It is used in many applications, such as evapotranspiration modeling [5-16], estimating 

soil moisture [17-22], and climatic hydrological and ecological studies [23-32]. An accurate LST retrieval 

also enables an analysis of the global surface temperature and its variability within a long period of time  

[33-36]. Some of the major research are related to the removal from remotely sensed data of the effects 

caused by atmospheric attenuation, land surface emissivity, and topography [37-47]. In 1998, Czajkowski et 

al. have started treating the influence of the Advanced Very High Resolution Radiometer (AVHRR) filter 

functions on surface temperature estimation from the Split-Window (SW) approach. In the present paper, an 

analysis of total error correction in pseudo-validation using MODTRAN simulation for Administration 

(NOAA) satellites series (7, 9, 11, 12, 14, 15, 16, 17, 18, 19) on the SW-LST algorithms performance has 

been carried out. 
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2. SW-LST Algorithms 

The SW method was originally proposed to estimate Sea Surface Temperature (SST) from satellite 

measurements based on the differential absorption in two adjacent infrared channels, and then was extended 

to land surface. Many papers have used this technique to extract SST and LST [37;48-52]. Recent LST 

retrieval algorithms cited in the bibliography are based on the radiative transfer equation and the SW forms. 

The theory applied in these SW-LST algorithms can be found in [37;41;46;48;53-57;57]. In our case, the 

SW-LST algorithm structure proposed by Sobrino and Raissouni [53] has been used, which takes into 

account the emissivity and water vapor effects: 

where Ts is the surface temperature (in K), T4 and T5 are the at-sensor brightness temperatures of 

the AVHRR/NOAA thermal Channels 4 and 5 (in K), ε4 and ε5 are emissivity estimates for Channels 4 and 

5, ε = (ε4 + ε5)/2 is the mean effective emissivity, ∆ε= (ε4 - ε5) is the emissivity difference, W (g cm
-2

), is the 

total amount of the columnar atmospheric water vapor. Finally, c0 to c6 are the SW algorithm coefficients, 

obtained using MODTRAN 4.0 radiative code simulation [58]. 

 

3. MODTRAN 4.0 Simulations and Filter Functions 

MODTRAN 4.0 radiative code is used to calculate the brightness temperatures expected at the 

AVHRR/NOAA satellites (7, 9, 11, 12, 14, 15, 16, 17, 18, 19) thermal Channels 4 and 5 for 54 different 

atmospheric situations. The profiles of temperature for these situations were obtained from the 

radiosoundings extracted neatly from the Television InfraRed Observation Satellite (TIROS) Operational 

Vertical Sounder (TOVS) Thermodynamic Initial Guess Retrieval (TIGR) database [59]. The calculations 

have been done for a large gradient of temperatures (i.e., T-5, T, T+5, T+10, and T+20, T is the first 

boundary layer temperature of the atmosphere), five different view angles (i.e., 0º, 10º, 20º, 30º and 40º), 54 

atmospheric water vapor (W) values at nadir (i.e., Wmin = 0.15 g.cm-2 and Wmax = 4.65 g cm-2), and 100 

emissivities of spectral responses of several types of surfaces extracted from the Advanced Spaceborne 

Thermal Emission Reflection Radiometer (ASTER) spectral library [60]. 

The outputs of applying MODTRAN 4.0 radiative code are values of atmospheric parameters: 

atmospheric transmittance (), atmospheric downwelling radiance (Latm
↓
) and atmospheric upwelling radiance 

(Latm
↑
), obtained by mathematical convolution using filter functions corresponding to Channels 4 and 5 of 

AVHRR/NOAA satellites (7, 9, 11, 12, 14, 15, 16, 17, 18, 19) for Normalized Filters. 

The effective wavelength (eff , in m) (in Eq. 2) is a spectral channel corresponds to the maximum 

value of the filter function ( f ). Table 1, §5 shows the values of eff corresponding to the considered AVHRR 

Channels 4 and 5. 

4. Numerical Coefficients and Sensitivity Analysis 

The SW-LST algorithm coefficients ci (i = 0, 1, 2, 3, 4, 5, 6) [see Eq. (1), § 2] were obtained from 

the minimization of 135000 simulation data (54 atmospheric profiles, 5 T values, 100 emissivities, 5 view 

angles) included in the constructed database for the AVHRR/NOAA satellites (7, 9, 11, 12, 14, 15, 16, 17, 

18, 19). 

First, in order to quantify the impact of each error source on the SW-LST algorithm, a sensitivity 

analysis was carried out in order to examine the performance of the developed methodology under different 

meteorological conditions and land cover types. On the basis of the error theory, the following equation has 

been considered: 

where alg is the standard deviation associated with the algorithm and NE∆T, ε and W are the 

contribution to the total error due to the uncertainties for at-sensor temperatures, land surface emissivity and 

atmospheric water vapor, respectively, and they are given by: 
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Thus, assuming typical values for the different errors, e(T4) = e(T5) = 0.05 K, e(ε4) = e(ε5) =  0.005 

and e(W) = 0.5 g.cm
-2

. 

 

5. RESULTS AND ANALYSIS 

5.1.  AVHRR/NOAA satellites  (7, 9, 11, 12, 14, 15, 16, 17, 18, 19) SW algorithms coefficients gaussian 

referential and gaussian filter centred at the corresponding sensor effective wavelength 

 Table 1 shows the SW coefficients (c0 to c6) obtained from MODTRAN 4.0 radiative code 

simulations and statistical regressions that can be used to estimate LST from thermal infrared sensors of 

AVHRR/NOAA satellites (7, 9, 11, 12, 14, 15, 16, 17, 18, 19). The calculations have been made using 

Gaussian Referential Filter (GRF) and Gaussian Filter (GF) centred at corresponding  sensor effective. 

The calculations have been made using the types of the spectral filter functions. Gaussian 

Referential Filter (GRF) and Gaussian Filter (GF) with the corresponding AVHRR Channels 4 and 5 

effective wavelengths 4eff (µm) and 5eff (µm).  

 

Table 1. Split-Window algorithm coefficients (c0 to c6) for AVHRR/NOAA satellites (7, 9, 11, 12, 14, 15, 16, 

17, 18, 19) obtained using: Gaussian Referential Filter (GRF) and Gaussian Filter (GF) centred at 

corresponding  sensor effective. Correlation coefficient (R). 

 

NOAA Filter c0 (K) c1 c2(K
-1) c3 (K) c4 (K .cm2.g-1) c5 (K) c6 (K .cm2.g-1) R 

7 
GRF 0.021 1.627 0.293 58.0 -0.33 -117 7.77 0.95 

GF 0.495 1.827 0.322 56.9 -0.20 -125 8.49 0.96 

9 
GRF 0.112 1.727 0.301 57.7 -0.34 -122 8.53 0.96 

GF 0.570 1.664 0.300 58.5 -0.51 -113 6.22 0.95 

11 
GRF 0.065 1.758 0.277 57.7 -0.19 -123 8.98 0.95 

GF 0.445 1.729 0.318 57.7 -0.36 -120 7.55 0.95 

12 
GRF -0.003 1.701 0.290 56.7 0.06 -143 14.08 0.95 

GF -0.110 1.266 0.308 60.0 -0.87 -107 6.03 0.93 

14 
GRF -0.018 1.492 0.262 57.6 -0.17 -121 9.70 0.94 

GF 0.097 1.224 0.243 60.0 -0.83 -96 4.79 0.93 

15 
GRF -0.061 1.587 0.302 57.4 -0.22 -124 9.75 0.95 

GF 0.065 1.182 0.259 61.1 -1.08 -89 2.85 0.93 

16 
GRF -0.184 1.570 0.326 56.1 0.14 -164 18.77 0.94 

GF -0.185 1.338 0.288 60.0 -0.71 -117 8.38 0.93 

17 
GRF -0.059 1.587 0.284 57.6 -0.20 -122 9.29 0.95 

GF 0.265 1.521 0.274 59.1 -0.59 -108 6.06 0.94 

18 
GRF -0.133 1.304 0.251 57.6 -0.27 -118 10.10 0.94 

GF 0.127 1.228 0.236 59.3 -0.69 -102 6.34 0.94 

19 
GRF -0.168 1.299 0.231 57.2 -0.10 -121 11.30 0.94 

GF 0.227 1.276 0.237 58.4 -0.49 -108 7.87 0.94 
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The sensitivity analysis results (Table 2), show a small variation amplitude of about 0.03 K in the 

error due to the minimization, alg (in K), with values varying between a minimum of 1.04 K and a maximum 

of 1.07 K. The error due to the noise equivalent delta temperature, NET, is varying with amplitude of about 

0.30 K between a minimum of 0.22 K and a maximum of 0.08 K. The error due to the uncertainty of the 

atmospheric water vapor content, w, shows variation amplitude of about 0.14 K  between a minimum of 0.02 

K and a maximum of  0.16 K. 

 The error due to the uncertainty of the surface emissivity, ε, shows variation amplitude of about 

0.26 K with a minimum of 0.62 K and a maximum of 0.88 K. Finally, The total error in the LST, Total(Ts), is 

showing variation amplitude of about 0.159 K with a minimum of 1.256 K and a maximum of 1.415 K. 

 

Table 2. The effective wavelengths 4eff (m) and 5eff (m) for the SW AVHRR Channel 4 and 5. alg error 

due to the minimization, NET error due to the noise equivalent delta temperature, ε error due to the 

uncertainty of the surface emissivity, w error due to the uncertainty of the atmospheric water vapor content, 

and Total(Ts) the total error in the LST . 

NOAA 4eff (µm) 5eff  (µm) alg (K) NE∆T (K) ε (K) W (K) Total(Ts) (K)

7 10.79 11.9 
1.05 0.27 0.73 0.02 1.307 

1.04 0.3 0.77 0.02 1.331 

9 10.774 11.85 
1.04 0.28 0.74 0.03 1.307 

1.05 0.27 0.72 0.02 1.302 

11 10.794 11.891 
1.05 0.28 0.75 0.03 1.321 

1.05 0.28 0.75 0.02 1.321 

12 10.857 11.945 
1.05 0.28 0.8 0.08 1.352 

1.07 0.24 0.68 0.02 1.290 

14 10.81 11.982 
1.06 0.25 0.72 0.04 1.306 

1.07 0.22 0.63 0.02 1.261 

15 10.82 11.926 
1.05 0.27 0.74 0.04 1.313 

1.07 0.22 0.62 0.02 1.256 

16 10.914 11.977 
1.06 0.28 0.88 0.16 1.415 

1.07 0.24 0.72 0.03 1.312 

17 10.797 11.927 
1.06 0.27 0.73 0.03 1.315 

1.06 0.26 0.69 0.02 1.291 

18 10.797 12.016 
1.06 0.23 0.69 0.05 1.287 

1.06 0.22 0.64 0.02 1.258 

19 10.793 12.045 
1.06 0.23 0.7 0.06 1.292 

1.06 0.22 0.66 0.03 1.268 

  
MIN 40.1 .000 .0.0 .0.0 400.. 

  
MAX 40.1 .0.. .000 .04. 4014. 

  
|MAX-MIN| .0.. .0.0 .00. .041 .04.0 

  
MEAN 40.. .00. .010 .0.1 40... 

 

The comparison between the different SW is shown; the behavior of the algorithms in terms of their 

errors can be seen. The results show also that the spectral band passes of the two long-wave sensors 

(AVHRR Channel 4 and Channel 5 of AVHRR/NOAA Series) vary significantly. particularly for each filter. 

The result show a small error on LST if the algorithm was applied to the AVHRR/NOAA new 

generation (NOAA-14, 15, 17 , 18 and 19 SW algorithm retrieves LST more accurately than other 

AVHRR/NOAA series).  

An accuracy LST SW algorithm must provide the LST more accurately and give less sensitive to 

uncertainties in our knowledge of land surface emissivities and atmospheric water vapor content. and to the 

instrument noise.  

 

5.2.  SW Generalized sw algorithm 

A generalized SW algorithm specifically using to retrieve LST from AVHRR/NOAA series (7. 9. 

11. 12. 14. 15. 16. 17. 18 and 19). can be estimated by using two filter functions. In order to apply the filter 
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function. we followed two procedures to build up the corresponding reliable function filter Generalized 

NOAAs - Gaussian Filter (G-GF): centered at the corresponding effective wavelength average (eff). 

Table 3 compiles the Generalized SW coefficients (c0 to c6) obtained from MODTRAN 4.0 radiative 

code simulations and statistical regressions for AVHRR/NOAA satellites. Gaussian Filter (GF) centred at 

corresponding  sensor effective. 

 

Table 3. Generalized Split-Window coefficients (c0 to c6) for Generalized NOAA Series Gaussian 

Filter (G-GF). Correlation coefficient (R).  

Generalized SW c0 (K) c1 c2 (K
-1) c3 (K) c4 (K .cm2.g-1) c5 (K) c6 (K .cm2.g-1) R 

G-GF 0.13 1.35 0.27 59.5 -0.71 -103 5.56 0.94 

 

Table 4 shows the corresponding results with total errors lower to Total(Ts) = 1.774 K . with the major 

contribution to the total error being the uncertainty in the ε. assumed to be 0.5% for G-GF.  

The algorithm can be used to calculate the LST for each AVHRR/NOAA series  

(7. 9. 11. 12. 14. 15. 16. 17. 18 and 19) with total errors (Total(Ts)) lower than 1.774 K . 

 

Table 4. The effective wavelengths 4eff (m) and 5eff (m) for the SW AVHRR Channel 4 and 5. 

The effective wavelength difference between AVHRR Channel 4 and Channel 5: ∆ = 5eff - 4eff m. 

Correlation coefficient (R). The sensitivity analysis: Error due to the minimization (alg). Error due to 

the noise equivalent delta temperature (NET). Error due to the uncertainty of the surface emissivity 

(ε). Error due to the uncertainty of the atmospheric water vapor content (w). and total error in the 

Land Surface Temperature (Total(Ts)) . 

Generalized SW 4eff (µm) 5eff  (µm) alg (K) NE∆T (K) ε (K) W (K) Total(Ts) (K)

G-GF 1.06 0.24 1.33 0.67 0.02 1.718 1.277 

5.3.  Validation data 

We do not have a complete data set of in situ measurements coinciding with all the platforms; thus. 

we provide a pseudo-validation of AVHRR/NOAA series (7. 9. 11. 12. 14. 15. 16. 17. 18 and 19) using some 

in situ measurements of LST in coincidence with NOAA 11 and NOAA 12 and total error in the LST. 

Total(Ts) NOAA Y/ NOAA 11.12. 

In order to give an idea of the approximated behavior of the proposed SW algorithms. we have used 

the database given by Prata (1994). Table 5 describes the conditions in term of water vapor. emissivity. 

temperature and number of data for Hay and Walpeup in Australia. 

 

Table 5. Atmospheric water vapor content (W) at nadir view (g.cm
-2

). Emissivity () and Land 

Surface Temperature ( LST) Statistics for Hay and Walpeup in situ measurement sites for NOAA 11 and 

NOAA 12. 

 Hay and Walpeup (NOAA 11) Hay and Walpeup (NOAA 12) 

Wmin (g.cm
-2

) 0.84 0.84 

Wmax (g.cm
-2

) 1.18 1.18 

Wmean (g.cm
-2

) 0.95 0.94 

LSTmin (K) 272.35 272.35 

LSTmax (K) 318.80 297.55 

LSTmean (K) 286.28 280.42 

min 0.978 0.978 

max 0.989 0.980 

mean 0.980 0.979 

# data 191 118 
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Table 6 gives validation of the proposed SW algorithms for NOAA 11 and 12 using Hay and 

Walpeup in situ measurements data and behavior study of the pseudo-validation of SW algorithms for 

NOAA (7, 9, 14, 15, 16, 17, 18, 19) using (G-NF) and (G-GF) Filters.  

The results show that the algorithms are capable to produce LST AVHRR/NOAA series with a standard 

deviation lower than 1.554 K and a Root Mean Square Error (RMSE) lower than 1.558 K.  

 

 

Table 6. Validation of the proposed Split-Window (SW) algorithms for NOAA 11 and 12 using Hay 

and Walpeup in situ measurements data and behavior study of the pseudo-validation of SW algorithms 

for NOAA (7, 9, 14, 15, 16, 17, 18, 19) using Generalized NOAA Series Filter (G-NF). Generalized 

NOAA Series Gaussian Filter (G-GF. General statistics: Minimum (Min). Maximum (Max). Average 

(µ) and Standard deviation (σ). The effective wavelengths 4eff (m) and 5eff (m) for the SW 

AVHRR Channel 4 and 5. The effective wavelength difference between AVHRR Channel 4 and 

Channel 5: ∆ = 5eff - 4eff m. Mean differences (bias) (K). Standard deviation of differences (K). 

Root Mean Square Error (K) 

 
GRF GF 

Sites Sensor 
Mean 

differences 

Standard 

deviation 

Root Mean 

Square Error 

Mean 

differences 

Standard 

deviation 

Root Mean 

Square Error 

  
(K) (K) (K) (K) (K) (K) 

H
ay

 a
n
d

 W
al

p
eu

p
 (

N
O

A
A

1
1

) 

NOAA 7 0.755 1.470 1.425 0.758 1.451 1.436 

NOAA 9 0.541 1.548 1.544 0.539 1.554 1.558 

NOAA 11 0.654 1.489 1.458 0.661 1.525 1.527 

NOAA 12 0.683 1.457 1.425 0.685 1.471 1.459 

NOAA 14 0.845 1.401 1.387 0.843 1.365 1.374 

NOAA 15 0.811 1.456 1.471 0.758 1.458 1.447 

NOAA 16 0.799 1.389 1.401 0.895 1.399 1.411 

NOAA 17 0.845 1.457 1.448 0.799 1.458 1.469 

NOAA 18 1.119 1.333 1.345 1.108 1.348 1.354 

NOAA 19 1.218 1.354 1.361 1.214 1.362 1.370 

H
ay

 a
n
d

 W
al

p
eu

p
 (

N
O

A
A

1
2

) 

NOAA 7 1.169 1.202 1.197 1.158 1.201 1.191 

NOAA 9 1.012 1.311 1.285 1.017 1.274 1.269 

NOAA 11 1.025 1.301 1.269 1.061 1.239 1.250 

NOAA 12 1.112 1.188 1.174 1.099 1.181 1.165 

NOAA 14 1.117 1.158 1.139 1.188 1.141 1.158 

NOAA 15 1.169 1.188 1.148 1.116 1.178 1.184 

NOAA 16 1.295 1.114 1.121 1.286 1.101 1.107 

NOAA 17 1.152 1.158 1.166 1.177 1.145 1.135 

NOAA 18 1.125 1.117 1.109 1.342 1.101 1.103 

NOAA 19 1.124 1.112 1.091 1.454 1.084 1.079 

 

6. CONCLUSION 

 

The study result gives the opportunity to use Gaussian Referential Filter (GRF) and Gaussian Filter 

(GF) instead of Normalized Filters obtained from NOAA agency, to retrieve the precise SW-LST from 

satellite thermal data. 

The SW-LST algorithm coefficients ci (i = 0. 1. 2. 3. 4. 5. 6) were obtained from the minimization of 

135000 simulation data (54 atmospheric profiles. 5 T values. 100 emissivities. 5 view angles) for the 

AVHRR/NOAA satellites (7. 9. 11. 12. 14. 15. 16. 17. 18. 19). The calculations have been made using 

Gaussian Referential Filter (GRF) and Gaussian Filter (GF) with the corresponding AVHRR Channels 4 and 

5 effective wavelengths 4eff (µm) and 5eff (µm). with the corresponding AVHRR Channels 4 and 5 effective 
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wavelengths. The total error in LST. Total(Ts). is showing a variation amplitude of about 0.159 K with a 

minimum of 1.256 K and a maximum of 1.415 K. 
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