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 Using more than two factors in the modulus of the RSA cryptosystem 

has the arithmetic advantage that the private key computation can be 

speeded up by CRT. With this idea, we present an efficient 

combination of two variants of RSA cryptosystem (Batch and 

Mprime RSA) which makes the decryption process faster than the 

existing variants. It can not only speed up RSA decryption but also 

guarantee the security of RSA cryptosystem.  
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1. INTRODUCTION  
The RSA cryptosystem due to Rivest, Shamir and Adleman [10] is one of the most popular public key 

cryptosystem and widely used to ensure privacy and authenticity of elctronic data. Several variants have been 

developed to enhance the property of RSA cryptosystem. Boneh [2] has given an excellent survey on simple 

variants of RSA such as(Batch RSA, Mprime RSA, Mpower RSA, Rebalanced RSA) those are designed to 

speedup RSA decryption in software. 

We review two of the four variants (Batch RSA, Mprime RSA, Mpower RSA, Rebalanced RSA) they 

analyse in [2], with the goal of reducing the decryption and signature generation times of the original 

cryptosystem. Firstly, The RSA Multiprime is composed of a modulus N made up with at least three prime 

factors: rpppN ...2,1  with 3r . The encryption process is the same as the classical RSA, but 

decryption and signature generation are performed by using Chinese Remainder Theorem (CRT) which 

speeds up these operations. Moreover parallel computation can be performed with r exponentiations.We 

compare the decryption work using the above scheme to the work done when decrypting a normal RSA 

ciphertext. Recall that standard RSA decryption using CRT requires two full exponentiations modulo n/2-bit 

numbers. In multi-prime RSA decryption requires b full exponentiations modulo n/b bit numbers. 

Secondly, Batch RSA [1]- do a number of RSA decryptions for approximately the cost of one i.e, Fiat 

[1] showed that, when using small public exponents 1e  and 2e  for the same modulus N, it is possible to 

decrypt two ciphertexts for approximately the price of one. 

The use of more than 2-primes in the RSA cryptosystem has the advantage that the private key 

operations can be speeded up using the CRT. An easy calculation shows that compared with 2-prime RSA, 

the theoritical speed up is by a factor of 9/4 for 3-prime RSA and for 4-prime RSA. In practice, a speed up of 

1.73 for 3-prime RSA has been achieved [2]. In this, we propose a new method that we called BM-Prime 

RSA; it is combination of Batch RSA and MPrime (Multi Prime) RSA having the goal of reducing the 
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decryption time in cryptosystem. This method can not only speed up RSA decryption but also guarantee the 

security of RSA cryptosystem. 

The rest of this paper is organized as follows. In next section, we first give the brief review of RSA 

cryptosystem. In section 3, we explain the Batch RSA and MPrime RSA. In section 4, we introduce our 

proposed scheme (BM-Prime RSA) and in section 5, with analysis of some possible attacks related to our 

proposed cryptosystem. Section 6, presents some results and we conclude in section 7 with some comments 

on BM-Prime RSA. 

 

2. Review of the basic RSA system 
We begin with brief review of the basic RSA pubic key system and refer to [10] for more 

information. The Key generation, Encryption and Decryption of RSA are as follows: 

 

2.1. Key Generation: To generate keys for the RSA scheme receiver R chooses two large primes p and q 

and computes n = pq. He then chooses an integer e less than and relatively prime to )(n and computes an 

integer d such that )(mod1 ned  . The public key and the secret key for the receiver R is (e, n) and d 

respectively. Plaintext and the ciphertext space is 0, 1, 2… n − 1. 

 

2.2. Encryption: To encrypt any plaintext M, the sender S computes )(mod nMC e by using the public 

key of R and sends the ciphertext C to the receiver R. 

 

2.3. Decryption: After getting the ciphertext C the receiver R computes MnC d )(mod  by using his 

secret key d. 

 

In 1982 a new technique that recovers M from C, by preprocessing the private key was introduced 

by J-J.Quisquater and C. Couvreur [8]. This method consists of calculating two integers dp = d mod (p − 1) 

and dq = d mod (q − 1), and two texts Mp and Mq, where pCM dp

p mod  and qCM dq

q mod . 

Applying the Chinese Reminder Theorem (CRT) [7] on Mp and Mq we recover the plaintext M. In this 

method, we refer to this technique as QC RSA, and to the version created by Rivest, Shamir and Adleman 

[10] as original RSA. This method is faster because it computes two exponentiations of n/2-bit integers 

instead of one exponentiation of n-bit integers. Thus we can theoretically speed up the decryption by four. 

 

 

3. Batch RSA and M-Prime RSA 
 

3.1. Batch RSA: Fiat [1] have shown that, using small public exponents 1e  and 2e for the same modulus N, 

it is possible to decrypt two ciphertexts for approximately the price of one. Fait generalized the above 

observation to the decryption of a batch of b RSA ciphertext. We have b pairwise relatively prime public 

keys beee ...., 21 , all sharing a common modulus N. we have b encrypted messages bCCC ...., 21 , where Ci 

is encrypted using the exponent ei. We wish to compute ie

ii CM
/1

  for bi ,...1 . Fiat described this b-

batch by processing a binary tree for small values of b )8( b . One sets  i iee  and  i

ee iCA
/

0  

(where the indices range over bi ,...1 ). Then one calculates  


b

i

ee iCAA
1

/1/1

0 . For each i one 

computes Mi as: 
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The Batch decryption is extended by QCRSA [8]. Here b-batch requires b modular inversions 

whereas Fiats tree-based method requires 2 b modular inversions, but fewer auxiliary multiplications. Note 

that since b and the ei’s are small, the exponents in above equation are also small. 

                     With standard 1024-bit keys, batching improves performance significantly. With b = 4, RSA 

decryption is accelerated by a factor of 2.6; with b = 8, by a factor of almost 3.5. Note that a batch size of 
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more than eight is probably not useful for common applications, since waiting for many decryption requests 

to be queued can significantly increase latency. 
 
 
3.2. Mprime RSA: Mprime RSA was introduced by Collins [5], who modified the RSA modulus so that it 

consists of k primes kpppN ...2,1  instead of the traditional two prime’s p and q. The key generation, 

encryption and decryption algorithms are as follows: 

 

3.2.1. Key generation: The key generation algorithm receives as parameter the integer k, indicating the 

number of primes to be used. The key pairs public and private are generated according to the following steps: 

 

(1) Compute k distinct primes kppp ,..., 21 , each one 








k

nlog
 bits in length and 

b

i ipN
1

. 

(2) Compute e and d such that )mod(Ned i , where 1))(,gcd( Ne  . )1()(
1 


b

i ipN . 

 

(3) For ki 1 , compute )1mod(  ii pdd . 

 

3.2.2. Encryption: Given a public key N, ie  and a message NZM   encrypt M exactly as in the original 

RSA, thus )(mod NMC e   

3.2.3. Decryption: To decrypt a ciphertext C, first calculate Mi = Cd i mod pi for each i, 1 _ i _ k. Next, apply 

the CRT to the Mi0s to get. )(mod NCM d . 

 

Observe that this method considers reducing the time expense by modular exponentiation evaluating 

a larger number of exponentiations with reduced moduli and private exponents. In this way, instead of 

evaluating, in decryption, a single exponentiation using  Nlog dlogNe-bit modulus and with a large 

private exponent, we will have k exponentiations on moduli of    kn \)log(  bits and on a reduced 

private exponent, which is more efficient. 

 

4. Our Proposed BM-Prime-RSA Method 
Currently, the recommended key length is 1024 bits. But in the future, we can expect it to be longer. 

Then it will be possible to have a modulus with more than three prime factors. We assert that the Batch RSA 

and Mprime RSA methods can be effectively combined. The general idea of this scheme is to use the key 

generation algorithm of Batch -RSA (modified version b primes) together with the decryption algorithm of 

Mprime RSA. The new key generation, encryption and decryption algorithm are as follows: 

 

4.1. Key Generation: Let N be the RSA modulus n = log (N) and b be the batch size. 

 

(1) Compute b distinct primes bppp ,..., 21 , each one 








b

nlog
 bits in length and 

b

i ipN
1

. 

(2) Compute e and d such that )mod(Ned i , where 1))(,gcd( Ne  . )1()(
1 


b

i ipN . 

(3) For bi 1 , compute )1mod(  ii pdd  

 

Public Key=  beeen ...., 2,1  ; Private Key=  bdddn ...., 2,1 . 

 

4.2. Encryption: We have b encrypted messages bccc ,....,, 21  where ci is encrypted using the exponent ei, 

i.e, 

 NMC
e

mod1/1

11   



                ISSN: 2089-3299 

IJINS  Vol. 2, No. 1,  February 2013 :  103 – 108 

106 

NMC
e

mod2/1

22   
   . 

   . 

   .  
 

 

NMC ie

ii mod
/1

                   bi 1  

 

4.3. Decryption: To decrypt a ciphertext c, First calculate i

e

ii pCM i mod
/1

  for each i, bi 1 . Next, 

apply the CRT to the Mi’s is to get NCM ie
mod

/1
 . The CRT step takes negligible time compared to 

the b-exponentiation. 

 
 

5. Security and Analysis 
(1) The security of BM-Prime RSA depends on the difficulty of factoring integers of the form 

bpppN ,..., 21  for b > 2. The fastest known factoring algorithm (NFS) cannot take advantage of this 

special structure of N. However, one has to make sure that prime factors of N do not fall within the range of 

the ECM which is analyzed in [9]. In our proposed method, the combination makes the decryption process 

faster. In other words by reducing each ic  (of batch RSA) modulo ip  )1( bi   combing later these 

results through the CRT, the decryption process is going faster. 

 

(2) In 2-prime RSA, if the public exponent is small a polynomial time method by Boneh, Durfee and Frankel 

[3] exists that completely recovers the private exponent once it is partially exposed. However in the 3 and 4 

prime case these methods become totally ineffective. The partial key exposure attack for a medium public 

exponent (i.e, n ), also by Boneh, Durfee and Frankel fails in the multiprime case because instead of 

solving a quadratic congruence, solving congruences of degree r where not all coefficient are known is 

required. 

 

(3) This result suggests that BM-Prime RSA does not only allow for faster decryption using CRT. But,  also 

somewhat more secure than 2-prime RSA. 

 

(4) Efficiency Performance: We compare the decryption work using the above scheme to the work done 

when decrypting a normal RSA ciphertext. Recall that RSA decryption using CRT requires two full 

exponentiations modulo n/2 bits numbers. In our BM-Prime decryption requires b full exponentiation modulo 

n/b bits numbers. 

 

 

6. Results 
In order to get a better estimate of the performance of decryption of BM-Prime RSA, we compare it 

with other variants. 

 

 6.1. Speed Comparision  
We should not analyze cryptographic algorithms with a fixed key length; rather evaluate speed and 

memory requirements depending on the key length, so that our results wont be out of date if the 

recommended key length becomes larger in future. 

For 768-bits moduli the variant that exhibits better performance would be Batch RSA, but for 1024 

and 2048 bits moduli BM-prime RSA presents the best performance. While the speedup of Batch, MPrime 

and MPower variants is fixed regardless of the size of the used moduli, speedup of the Rebalanced and the 

RPrime variants [11] significantly increases with larger moduli. This happens because the consideration s 

fixed and equal to 160 bits (remember that s is the size of the exponent used in decryption algorithm), while 

this exponent increases for all other variant. 

For the applications that prioritize the performance the decryption and the signature generation, the 

best choice is Bm-Prime RSA, which for 2048-bits moduli got a gain of 30 percent with relation to 

Rebalanced RSA and is there-fore about 27 times faster than original RSA. Another fact that favors this 
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variation is that current systems that use MPrime RSA can easily be adapted to it; it is enough to modify the 

key generation algorithm or create a hybrid key system. 

 

6.2. Memory Comparision  
The idea of reducing the decryption time in detriment of the encryption, used by Rebalanced RSA 

and BM-prime RSA, seems first sight not to present advantages in practical terms. However, there are 

applications where the balancing characteristic of these algorithms is desirable. Consider, for instance, a 

situation where the signature generation is executed much more often than verification. A bank, for example, 

can emit many digital signatures in a single day (in documents, receipts), while the user that receives this 

signature, has usually a much smaller burden. In this situation is reasonable to transfer the computational 

effort demanded for the signatures generation to the party verifying them. 

Another example is provided by applications running on handheld devices (PDAs), which generally 

possess limited computational resources. In communications with servers (or even with notebooks or desktop 

computers), we could leave the task of decryption (fast) for the small device, and the encryption (slow) for 

the computers with more computational resources. A still better alternative would be to use an 

implementation of MPrime RSA with keys of the MPrime and BM-Prime RSA, with the use depending on 

the type of communication (desktop/desktop, or desktop/handheld), in other words, to use a scheme of hybrid 

keys. 

 

 

7. Conclusion 

We conclude that as the numbers of primes factors in the modulus increases, the attack become 

more complex, which result in that the attack apply in fewer instances or becomes totally ineffective, or do 

not seem to extend at all. While our result showed that BMPrime RSA is less vulnerable to current attacks on 

RSA.It can not only speed up RSA decryption but also guarantee the security of RSA cryptosystem. The 

benefit of our method is lower computational cost for the decryption and signature primitives, provided that 

the CRT (Chinese Remainder Theorem) is used. Better performance can be achieved on single processor 

platforms, but to a greater extent on multiprocessor platforms, where the modular exponentiations involved 

can be done in parallel. All the RSA variants we discuss apply equally well to digital signatures, where they 

speed up RSA signing. 

 

 

REFERENCES  
 

[1] A. Fiat., '' Batch RSA ''. Advances in Cryptology: Proceedings of Crypto '89,  pp. 435-175, 1989. 

[2] D. Boneh and H. Shacham, '' Fast variant of RSA '', RSA laboratories, 2002. 

[3] D.Boneh, G. Durfee and Y. Frankel, '' Exposing an RSA private key given a small fraction of its bit '',  Advances in                

cryptology- ASIACRYPT’98, vol. 1514, LNCS, pp. 25-34. 

[4] Cesar Alison Monticro Paixao, '' An efficient variant of the RSA cryptosystem '', Cryptology ePrint Archive, pp. 

159,   2003. 

[5] Collins T, Hopkin D, Langford S. and Sabin M., '' Public key cryptographic apparatus and method '', [US patent ] 5, 

848, 159, 1997 

[6] D. Boneh, '' Twenty Years of Attacks on the RSA Cryptosystem. '', Notices of the American Mathematical Society        

46(2), pp. 203213, 1999. 

[7] A. Menezes, P. Van Oorschot, and S. Vanstone. '' Handbook of Applied Cryptography ''. CRC Press, 1997. 

[8] J. Quisquater and Couvruur, “Fast decyhpering algorithm for RSA public key cryptosystem”, Electronics Letters,              

vol 01, pp. 905-907, 1982. 

[9] R. Silverman and S. Wagstaff, '' A Practical Analysis of the Elliptic Curve Factoring Algorithm. '', Math. Comp.       

61(203), 445462, 1993. 

[10] R. L.Rivest, A. Shamir, and L. Adlemann, '' A method for obtaining digital signature and public key cryptosystem'',      

Communication of the ACM, vol. 2, pp.120-126, 1978. 

[11] S. Cavallar,B. Dodson, A. K. Lensra, W. Lioen, P. Montgomery, B. Murphy, H.Riele, K. Aardal, J. Gilchrist, G.        

Guillerm, P. Leyland, J. Marchand, F. Morain, A. Muffet, C. Putnam and  P. Zimmermann, '' Factorization of a 

512-Bit RSA Modulus. '', Proceedings of Eurocrypt 2000, vol-1807(LNCS), pp. 111, Springer-Verlag, 2000. 

[12] X. S. Li, et al., "Analysis and Simplification of Three-Dimensional Space Vector PWM for Three-Phase Four-Leg 

Inverters," IEEE Transactions on Industrial Electronics, vol. 58, pp. 450-464, Feb 2011. 

[13] R. Arulmozhiyal and K. Baskaran, "Implementation of a Fuzzy PI Controller for Speed Control of Induction 

Motors Using FPGA," Journal of Power Electronics, vol. 10, pp. 65-71, 2010. 

[14] D. Zhang, et al., "Common Mode Circulating Current Control of Interleaved Three-Phase Two-Level Voltage-

Source Converters with Discontinuous Space-Vector Modulation," 2009 IEEE Energy Conversion Congress and 

Exposition, Vols 1-6, pp. 3906-3912, 2009. 



                ISSN: 2089-3299 

IJINS  Vol. 2, No. 1,  February 2013 :  103 – 108 

108 

[15] Z. Yinhai, et al., "A Novel SVPWM Modulation Scheme," in Applied Power Electronics Conference and 

Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE, 2009, pp. 128-131. 

 

 

BIOGRAPHY OF AUTHORS  

 

 

 

 

Sushma Pradhan received the B.Sc, M.Sc and M.Phill degree in Mathematics Pt. Ravishankar 

Shukla University, Raipur, Chattigarh, India in 2002, 2004 and 2007. She joined School of 

Studies in Mathematics, Pt. Ravishnakra Shukla University, Raipur, India for her Research work. 

She is a life time member of Cryptology Research Society of India (CRSI). Her area of interest is 

Public Key Cryptography and Integer factorization Problem. 

  

 

 
 

 

Birendra Kumar Sharma Professor, School of Studies in Mathematics, Pt.Ravishankar Shukla 

University Raipur (C. G.) India. He has been working for long time in the field of Non Linear 

Operator Theory and currently in Cryptography. He and his research scholars work on many 

branches of public key cryptography. He is a life member of Indian Mathematical Society and 

the Ramanujan Mathematical Society. 

  

  
 


