

Institute of Advanced Engineering and Science

International Journal of Information & Network Security (IJINS)

Vol.3, No.4, August 2014, pp. 248~256

ISSN: 2089-3299 248

Journal homepage: http://iaesjournal.com/online/index.php/ IJINS

w w w . i a e s j o u r n a l . c o m

Formal Verification Of A Shopping Basket Application Model

Using PRISM

Patrick Mukala

Departement of Computer Science, University of Pisa

Article Info ABSTRACT

Article history:

Received Jun 12
th

, 2014

Revised Aug 20
th

, 2014

Accepted Aug 26
th

, 2014

 Formal verification is at the heart of model validation and correctness. With

model checking, invaluable realizations have been accomplished in software

engineering and particularly in software development. By means of this

approach, complex applications can be simulated and their performance

forecasted in light with requirements at hands and expected performance. In

this short paper we present the results of a simulation using Prism Model

Checker for a Shopping Basket Application Model. Applied on a modified

model from a projected process model, the objective is to simulate the

behavior of shoppers as they go through a number of defined states of the

shopping process and express accessibility and reachability through a number

of defined properties.

Keyword:

Model Checking

Formal Verification

Shopping Basket Model

Prism Model Checker

Performance Simulation Copyright @ 2014 Insitute of Advanced Engineeering and Science.

All rights reserved.

Corresponding Author:

Patrick Mukala,

Departement of Computer Science,

University of Pisa,

Largo Pontecorvo 5, 56127 Pisa PI

Email:patrick.mukala@gmail.com, mukala@di.unipi.it

1. INTRODUCTION
It can be evidently proved that the value of model checking in automatically verifying correctness

properties of finite-state systems is invaluable. A number of advantages for using model checking over other

approaches based on simulation, testing, and deductive reasoning are extensively outlined in the literature

such as the work in [6] and [7]. From complex hardware and software applications designs, model checking

is used to verify required properties as specified and some of these include safety requirements such as the

absence of deadlocks or their presence thereof as well as a range of similar critical states that can potentially

cause the system to crash. Other requirements include satisfying correctness, liveness and persistence and

product properties [7]. The most notable attractive particularity of model checking is the possibility to

automatically perform verifications and offer counterexamples in case a model fails to satisfy a property

serving as indispensable debugging information. This is performed through a number of model checking

techniques and tools [8][9]. Some of these tools include BLAST, ROMEO, NusMV, SPIN, PAT, TAPS,

PRISM and UPPAAL.

 The objective in this short document is to report on the use of one of the tools, namely Prism,

through a case study as required for this course. Our case study translates a scenario used in [1] for process

mining into a Discrete-Time Markov Chain (DTMC) Model that can be verified in Prism. Prism supports a

number of models including discrete-time Markov chains (DTMCs), continuous-time Markov chains

(CTMCs), Markov decision processes (MDPs), probabilistic automata (PAs) and probabilistic timed

automata (PTAs). More details about these models can be found in [2].

 The scenario from which stems our case study in [1] deals with using process mining [9] to analyze

systems audit trail. An audit trail is a record of all events that take place in a system and across a network,

i.e., it provides a trace of user/system actions so that security events can be related to the actions of a specific

individual or system component [1]. The scenario can be described as follows: A website specializing in

selling products is considered. It is assumed that all registered users are assigned a shopping basket that can

be edited at any time. While shopping, the user selects products and puts them in the basket and these remain

IJINS ISSN: 2089-3299

Formal Verification Of A Shopping Basket Application Model Using PRISM (Patrick Mukala)

249

in the basket unless they are removed by the user even after logging out. This implies that the user basket‟s

status is saved and is retrieved when the user enters the website again. We choose a number of inherent user

activities as depicted in Figure 1 below.

From this figure, a log of the audit trail can be retained to undertand the usage of the web site and user

movements. Considering that such a log be WOK = {“Enter, Select Product, Add to Basket, Cancel Order”,

“Enter, Select Product, Remove from Basket, Cancel ”, “Enter, Select Product, Add to Basket, Continue

Shopping, Select Product, Remove from Basket, Continue Shopping, Select Product, Add to Basket, Proceed

to Checkout, Fill in Delivery Info, Fill in Payment Info, Provide Password, Process Order, Finish Checkout”,

“Enter, Select Product, Remove from Basket, Proceed to Checkout, Fill in Payment Info, Fill in Delivery

Info, Provide Password, Process Order, Finish Checkout”}.

Figure 1 : Process execution Flow for Online Shopping Basket Activities

This information gives an idea of how users perform their actions online while using the services but

does not predict the performance of the system if implemented. For the sake of our assignment, we derive a

DTMC Model from this scenario as given in the following section and verify it in Prism.

The rest of the paper is structured as follows: in section 2, we succinctly talk about DTMCs by

formally defining them, in section 3 we introduce and describe our model, while in section 4 we set a number

of properties for verification and give the results as interpreted in section 5 and conclude in section 6.

2. DISCRETE TIME MARKOV CHAINS MODELS
In order to explain these models, we consider two definitions as follows.

Definition 1 [2]: Formally, a DTMC D is a tuple (S,sinit,P,L) where:

 S is a finite set of states (“state space”)

 sinit ∈ S is the initial state

 P : S × S → [0,1] is the transition probability matrix where Σs‟∈S P(s,s‟) = 1 for all s ∈ S

 L : S → 2AP is function labeling states with atomic propositions

 ISSN: 2089-3299

IJINS Vol. 3, No. 4, Month 2014 : 248 – 256

250

Definition 2: The stochastic process X = (X0, X1,…) that takes values in some countable set S is a discrete

Markov chain if it satisfies the Markov property:

)(),...,(1110 nnnn XsXPXXXsXP
,

for all n > 0, and s in S.

This Markov property says essentially that the probability that the chain will visit state s at step n given all

the past history is equal to the probability of visiting state s at step n given only the current state Xn-1 (at time

n-1). The conditional probability
)(1 wXsXP nn is referred to the one step transition probability of

the Markov chain from state s to state w at step n. If in addition, the transition from one state to the other does

not depend on the step n, that is

)(),...,(1110 nnnn XsXPXXXsXP
,

for all n, then we say that the Markov chain is stationary or homogeneous.

For a stationary Markov chain, it is sufficient to specify the one-step transition probability, pij =

)(1 iXjXP nn . The square matrix P whose elements are the pij„s is called the one-step transition

matrix, or just the transition matrix of the Markov chain.

The n-step transition probabilities,

)(n

ijp
, are defined by

)(0

)(iXjXPp n

n

ij
. That is,

)(n

ijp
is the

probability that the chain visits state j at step n, given that it is initially at state i at step 0. Note that

)1(

ijp
 is

simply pij.

We may derive the following relationship as follows.

)(0

)(iXjXPp n

n

ij

k
n

ikkj

nknk nn

nk nnk nn

pp

iXkXPkXjXPiXkXPkXjXP

iXkXPiXkXjXPiXkXjXP

)1(

0101011

010101

)()()()(

)(),(),(

In conclusion,

k kj

n

ik

n

ij ppp)1()(

, for all states i, and j and for all steps n. In matrix notation, this is

equivalent to

P
(n)

 = P
(n-1)

P,

where P
(n)

 is the matrix whose elements are the n-step transition probabilities

With DTMC, a transition corresponds to the advance of a single time-unit. Therefore, the underlying

time domain is thus discrete because the present moment refers to the current state and the next moment

corresponds to the immediate successor state. Simply put, with these models the system behavior can be

observed at the time points 0,1,2,.... of real-time constraints in asynchronous systems by means of a discrete-

time domain. A discrete time domain conceptually allow for transition systems to be modeled as timed

systems where each action is assumed to last for a single time unit. More general delays can be modeled by

using a dedicated unobservable action, τ (for tick), say. The fact that action α lasts k > 1 time units may be

IJINS ISSN: 2089-3299

Formal Verification Of A Shopping Basket Application Model Using PRISM (Patrick Mukala)

251

modeled by k−1 tick actions followed (or preceded) by α. This approach typically leads to very large

transition systems [7].

3. THE MODEL : A DTMC MODEL FOR SHOPPING BASKET APPLICATION

A DTMC model boasts as depicted in Figure 2 boasts 14 states that are annotated to signify the

corresponding state number and its description. In this model, the user starts with being in the BrowseShop

state with a 30% probability to continue just browsing through announcements and product detailing before

deciding whether to continue just browsing or logging in and making purchases, with the latter‟s occurrence

estimated at 70 % probability. The next state is LoggedIn signaling the user‟s presence and where he/she is

100% sure to have permission to select products in the SelectProduct state where he/she can either remove

products from the shopping basket or add more at split chance. If the user decides to delete from the already

selected basket at the DelFrBasket state, the next steps would require them to either continue shopping for

other alternative products through KeepShopping with only 35% probability where he/she will be redirected

to select new products through SelectProduct or he/she can decides to cancel the order altogether at the

CancelOrder state with 65 % probability at which point they are required to log out through the LoggedOut

state.

On the other hand, if the user decides after selecting product to add to the basket through the

AddToBasket state, he/she has a fifty-fifty choice to either start checking and move to the StartCheckout state

or continue shopping through KeepShopping at which point he/she is redirected and taken back to

SelectProduct to choose new products. At StartCheckout state, the user has a possibility at equal probabilities

to either fill in only payment information for the selected products and hence move to FillPaymentInfo state

or choose an alternative option for providing payment details with a possibility for delivery at

FillInDeliveryInfo. If the user gets to the FillPaymentInfo state, he/she can either proceed to the next step for

financial credentials authentication at Authenticate or go back to StartCheckout if there is a change of heart

and the need to rather choose the option with possibility of delivery at FillInDeliveryInfo. Similarly, if the

initial choice was to request and invoke the delivery service through the FillInDeliveryInfo, the user has a 50

% choice to either proceed to Authenticate or return to StartCheckout.

At Authenticate, three possibilities occur. The user is either redirected to the previous step (in case

of incorrect credentials) with 25% probability for both FillInDeliveryInfo and FillPaymentInfo each and a

50% probability to move to process the order at ProcessOrder . From this state, he/she is moved to the nest

step called CompleteCkeckout for confirmation details and printing thereof and then the user can conclude

the shopping transactions through the last state called LoggedOut.

 ISSN: 2089-3299

IJINS Vol. 3, No. 4, Month 2014 : 248 – 256

252

Figure 2 : A DTMC Model for Shopping Basket Agent

cancellation
// Model Checking a shopping basket model

dtmc

module shopper

 // declaring local states from the shopping basket model

 s : [0..13] init 0;

 [] s=0 -> 0.3:(s'=0) + 0.7:(s'=1);

 [] s=1 -> 1.0:(s'=2);

 [] s=2 -> 0.5:(s'=3) + 0.5:(s'=4);

 [] s=3 -> 0.5:(s'=5) + 0.5:(s'=6);

 [] s=4 -> 0.65:(s'=7) + 0.35:(s'=5);

 [] s=5 -> 1.0:(s'=2);

 [] s=6 -> 0.5:(s'=8) + 0.5:(s'=9);

 [] s=7 -> 1.0:(s'=13);

 [] s=8 -> 0.5:(s'=10)+ 0.5:(s'=6);

 [] s=9 -> 0.5:(s'=10)+ 0.5:(s'=6);

 [] s=10 -> 0.25:(s'=8) + 0.25:(s'=9) + 0.5:(s'=11);

 [] s=11 -> 1.0:(s'=12);

IJINS ISSN: 2089-3299

Formal Verification Of A Shopping Basket Application Model Using PRISM (Patrick Mukala)

253

 [] s=12 -> 1.0:(s'=13);

 [] s=13 -> true;

endmodule

4. PROPERTIES FOR VERIFICATION

In order to verify this model in Prism, we set a number of properties as threshold for verification.

The idea is that we want to get a picture of the application performance with regards to a number of

expectancy factors. These include understanding and simulating at what extent an application user will be

able to successfully complete shopping to keep shopping after deleting from Basket, to eventually come back

and include delivery information after initially ignoring the choice, to cancel the order, to eventually buy,

after deleting some products from the basket . Additionally, one would like to estimate that given this

scenario, what would be the probability that a user would eventually reach the checkout state, give erroneous

authentication financial credentials, will log out successfully, would select either simply paying or requesting

delivery as well, and finally, the probability that a user would delete selected products.

Based on these requirements, we formulate ten properties as follows that can be transformed into

model properties and verify them in Prism as required.

 P1: Probability of eventually reaching state 12, which indicates that the user has completed

successfully shopping and bought products is less than 0.7 :

P< 0.7 [F (s = 12)]

 P2: Probability to keep shopping after deleting from Basket shall be less than 0.5

P< 0.5 [F (s = 5) { (s=4)}]

 P3: Probability to eventually come back and include delivery information after initially

ignoring the choice is greater or equal to 0.5

P >= 0.5 [F (s = 9) {(s = 8)}]

 P4: Probability to cancel the order shall be less than 0.8

P< 0.8 [F (s = 7)]

 P5: Probability to eventually buy, after deleting some products from the basket shall be

more than 0.5

P > 0.5 [F (s = 12) { s = 4}]

 P6: What is the probability that a user would eventually start checkout?

P=? [F (s = 6)]

 P7: What is the probability that a user would give erroneous authentication for financial

credentials?

P? [F (s = 9) {(s =10) }]

 P8: What is the probability that a user will log out successfully?

 ISSN: 2089-3299

IJINS Vol. 3, No. 4, Month 2014 : 248 – 256

254

P=? [F(s = 13)]

 P9: What is the probability that a user would select either simply paying or requesting

delivery as well?

P=? [F((s = 8)|(s = 9))]

 P10: What is the probability that a user would delete selected products?

P=? [F (s = 4)]

5. PROPERTIES FOR VERIFICATION

Properties Verification Results

 Property 1: P<0.7 [F (s=12)]

Number of states satisfying P<0.7 [F (s=12)]: 7

Result: true (property satisfied in the initial state)

 Property 2: P<0.5 [F (s=12) {(s=4)}]

Number of states satisfying P<0.5 [F (s=12) {(s=4)}]: 7

Result: true (property satisfied in all filter states)

 Property 3: P>=0.5 [F (s=9) {(s=8)}]

Number of states satisfying P>=0.5 [F (s=9) {(s=8)}]: 4

Result: true (property satisfied in all filter states)
 Property 4: P<0.8 [F (s=7)]

Number of states satisfying P<0.8 [F (s=7)]: 12

Result: true (property satisfied in the initial state)

 Property 5: P>0.5 [F (s=12) {(s=4)}]

Number of states satisfying P>0.5 [F (s=12) {(s=4)}]: 7

Result: false (property not satisfied in all filter states)

 Property 6: P=? [F (s=6)]

Result: 0.4347821160949293

 Property 7: P=? [F (s=9) {(s=10)}]

Result: 0.3999999999966359

 Property 8: P=? [F (s=13)]

Result: 1.0 (value in the initial state)

 Property 9: P=? [F ((s=8)|(s=9))]

Result: 0.4347821160949293

 Property 10: P=? [F (s=4)]

Result: 0.666666030883789

The visual representation of the results of the verification is depicted in the snapshot in Figure 3

below.

IJINS ISSN: 2089-3299

Formal Verification Of A Shopping Basket Application Model Using PRISM (Patrick Mukala)

255

Figure 3 : Snapshot of Properties Validation

Figure 4 : Probability of Deleting A product from Basket

Figure 5 : Probability of Successfully Completing A transaction

Figure 6 : Probability of Supplying incorrect financial credentials

 ISSN: 2089-3299

IJINS Vol. 3, No. 4, Month 2014 : 248 – 256

256

Figure 7 : Probability of Interrupting or Completing a successful transaction and exitt

As given by the snapshot in figure 3, the simulation this experiment suggests that 4 indicators can be

successfully verified except from the expected probability to eventually buy, after deleting some products

from the basket to be more than 50. The rest of properties are expected to give numerical values as depicted

in Figures 4 to 7.

6. CONCLUSION

In this short paper, the objective was to simulate a DTMC model and verify a number of properties

using Prism Model Checker. A case study was chosen to this end in order to facilitate this process. We

constructed a DTMC model from a scenario on an online shopping basket environment and proposed a

number of properties for verification as depicted in the previous section. We kept our case study is simple as

possible and ensured the verification process demonstrated the fundamentals of model checking with PRISM.

REFERENCES
[1] van der Aalst, W. M., & de Medeiros, A. K. A. (2005). Process mining and security: Detecting anomalous

process executions and checking process conformance. Electronic Notes in Theoretical Computer

Science, 121, 3-21.

[2] Kwiatkowska, M., Norman, G., & Parker, D. (2011, January). PRISM 4.0: Verification of probabilistic

real-time systems. In Computer Aided Verification(pp. 585-591). Springer Berlin Heidelberg.

[3] Kwiatkowska, M., Norman, G., & Parker, D. (2012). The PRISM benchmark suite. In 9th International

Conference on Quantitative Evaluation of SysTems(pp. 203-204).

[4] Hinton, A., Kwiatkowska, M., Norman, G., & Parker, D. (2006). PRISM: A tool for automatic

verification of probabilistic systems. In Tools and Algorithms for the Construction and Analysis of

Systems (pp. 441-444). Springer Berlin Heidelberg.

[5] Parker, M. K. G. N. D. (2004). PRISM 2.0: A tool for probabilistic model checking.

[6] Clarke, E. M., Grumberg, O., & Peled, D. (1999). Model checking. MIT press.

[7] Baier, C., & Katoen, J. P. (2008). Principles of model checking (Vol. 26202649). Cambridge: MIT press.

[8] Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., & Schnoebelen, P.

(2010). Systems and software verification: model-checking techniques and tools. Springer Publishing

Company, Incorporated.

[9] Katoen, J. P. (1999). Concepts, algorithms, and tools for model checking. IMMD.

[10] Van der Aalst, W. M., & Weijters, A. J. M. M. (2004). Process mining: a research agenda. Computers in

industry, 53(3), 231-244.

BIBLIOGRAPHY OF AUTHOR

IJINS ISSN: 2089-3299

Formal Verification Of A Shopping Basket Application Model Using PRISM (Patrick Mukala)

257

Patrick Mukala is currently a PhD Candidate in Computer Science at the

University of Pisa in Italy. His doctoral work includes process and data mining in

FLOSS repositories.

