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 Epidemics or diffusion models are popular as a potentially effective solution 

to capture information diffusion in online social networks (OSNs). Moreover, 

these models have been widely studied in the context of mobile ad-hoc 

networks, wireless sensor networks and peer-to-peer technologies for 

security and information diffusion purposes. In this paper, we describe a 

formal probabilistic model for information diffusion in online social 

networks. We consider specifically how new behaviours spread from user to 

user through an OSN. We use PRISM for the formal analysis of the diffusion 

process on a fixed OSN topology. We show some experiemental results 

pertaining to the speed and the probability of infection cascade as global 

properties considered in the formal analysis of the diffusion model. 
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1. INTRODUCTION  

Epidemics or diffusion models/protocols have recently gained popularity as a 

potentially effective solution to capture information diffusion in online social networks 

(OSNs). Moreover, these models have been widely studied in the context of mobile ad-hoc 

networks, wireless sensor networks and peer-to-peer technologies for security and 

information diffusion purposes [4][5].  

This work describes a formal probabilistic model for information diffusion in online 

social networks. We consider specifically how new behaviours spread from user to user 

through an OSN. We use PRISM for the formal analysis of the diffusion process on a fixed 

OSN topology [1][2]. Probabilistic model checking allows calculating the likelihood of the 

occurrence of certain events during the execution of the model and can be useful to 

establish properties of the model. The speed and the probability of infection cascade are 

the main local/global properties that we want to take into account in the formal analysis of 

the diffusion model [5]. 

Conventional probabilistic model checkers input a description of the system to be 

analysed (or model), represented as a state transition system, and a formal specification of 

the quantitative and qualitative properties of the system to be analysed. The description of 

a model may encode the probability of making a transition between states.  

The model checker returns a result, indicating whether the model satisfies the 

specified properties, typically formulas in some temporal logic. The PRISM’s property 

specification language includes several temporal logics such as Linear Temporal Logic 

(LTL) and Probabilistic Computational Tree Logic (PCTL) [1][2][3].  
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S = susceptible to behavior A  

I = infected by the behavior A 

 
 

The rest of the paper is structured as follows. In section 2, we discuss the OSN with 

related grpahs, we lay the foundation for epidemics models, given details about our model 

and properties and present some results and finally in section 3, we conclude this 

experiment. 
 

2. DIFFUSION MODELING ON OSNs: Problem Statement and Methodology 

An OSN is described by an undirected graph G=(V,E), where vertices in V correspond 

to users and edges in E to the social relationships between them. Let δ(u) the set of all the 

friends of a user u, defined as δ(u)={v∈V|(u,v)∈E}. Moreover, each user u∈V has a fixed 

unique id in the system. The diffusion we want to model takes into account the spreading 

of a new behaviour A on G. At any time, a user may or not may adopt the new behaviour 

A. We consider a Susceptible-Infected epidemic model (SI) where each user is infected (I) 

if it adopts the new behaviour A, otherwise the user is in a susceptible (S) state. A 

susceptible user can remain susceptible or can be infected with the new behaviour, while 

an infected user can not leave his behaviour and come back in a susceptible state. The SI 

model described above is depicted in Figure 1. 

 
 

 
Figure 1: The SI epidemic model. 

 

Initially, each member of the OSN is in a susceptible state (i.e. the user not adopt 

the behaviour A). After that, each user u chooses whether to remain susceptible or become 

infected based on the choices of his neighbours δ(u). Let σ(u) the fraction of the infected 

u’s neighbours, defined as σ(u)=size({v∈δ(u)| v infected})/size(δ(u)) when δ(u)≠0, 0 

otherwise. The spreading rules of the model can be informally summarised as follows: 

 

• A susceptible user whose neighbours are in a susceptible state (σ(u)=0) becomes 

infected with a fixed probability pInfect for some reason that depends on the real 

world, otherwise remains susceptible with probability (1−pInfect).  

• A susceptible user who has at least one infected neighbour (σ(u)>0) becomes 

infected if the fraction of his infected neighbours is greater than (or equal to) a fixed 

threshold (i.e. σ(u)≥threshold).  

• An infected user remains infected for the entire simulation.  

 

A more formal description of the rules described above is shown in Figure 2. The 

parameters that define the model are: 

 

0≤pInfect≤1 The probability that a user, with no infected neighbour, will be infected. The 

same for all users.  

0<threshold≤1 A homogeneous users’threshold which specifies the fraction of infected 

neighbours that each user must have in order to become infected. 
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Figure 2: Events on each OSN’s user. 

We focus on a fixed OSN graph of 9 users arranged in a 3 by 3 grid, where only 

direct neighbours have a friendship relationship. Therefore, in our case, analysis of 

different network topologies requires different models. Figure 3 shows the OSN graph 

described above. Each user is identified by a progressive number indicating his position in 

the grid. 

To simplify descriptions and help focus, ignoring details that distract from the essence 

of the problem we assume that the network is synchronous, reliable and without collisions. 

The model proceeds in rounds: at one point in time all users will choose the forward rule 

and apply it at the same time. All users update their state synchronously. 

 

 

 
Figure 3: Online social network topology 

 

We focus on the use of Discrete-time Markov chains (DTMC). Each user of the OSN 

is defined by a PRISM’s module which carries out the rules depicted in Figure 2, based on 

both the local state of the current user and the local state of his neighbours. The module 

defines the user’s state through a local variable that takes value 0 when the user’s state is S 

and value 1 when the user’s state is I.  

For instance, in the network shown in Figure 3 the fraction of the infected v
1
’s 

neighbours σ(v
1
) is equal to (state_v

0
+state_v

4
+state_v

2
)/3. Table 1 shows the model type, 

the names of the modules and the name of the variables in each module. 

Each rule of the modules is synchronized with a label and to each state of the model is 

assigned a unit cost/reward which aims to measure the amount of elapsed rounds. 
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Table 1: Information about the model 

Type: DTMC 

 Modules: Node0 Node1 Node2 Node3 Node4 Node5 Node6 Node7 

Node8 

 Variables: infected0 infected1 infected2 infected3 infected4 infected5 

infected6 infected7 infected8 

 States: 512 

 Transitions: 2011 

 Transition matrix: 1378 nodes 

 Reachability: 3 iterations 

 

 

Table 1 shows statistics for the DTMC model we have built, where pInfect and 

threshold are respectively equal to 0.01 and 0.5. The tables include: the number of states 

and transitions in the DTMC representing the model, the number of nodes in the transition 

matrix of the model and the number of iterations required to find the reachable states 

(which is performed via a fix point algorithm).  

As mentioned above above, the speed and the probability of infection cascade are the 

main local/global properties that we want to take into account in the formal analysis of the 

system. In order to test the number of infected users we define the following formula: 

 

formula AllInfected = infected0 + infected1 + infected2 +  

infected3 + infected4 + infected5 +  

infected6 + infected7 + infected8; 

 

 

2.1 Properties 

Making use of PRISM as our model checker, we identified seven main properties to be 

verified as follows: 

 

 With probability 1, eventually all users are infected 

P >=1  [  true  U  AllInfected =9  ] 

 

 The actual probability that eventually all users are infected 

P=?  [  F  AllInfected =9  ] 

 

 The actual probability that, eventually, a xed number of users (x) are infected  

P=?  [  F  AllInfected =x  ] 

 

 The actual probability that, eventually, a xed user is infected (for each user)  

P=?  [  F  infected0 =1  ] 

 

 The expected number of rounds taken to reach, from the initial state, a state where 

all users are infected  

R{" rounds "}=?  [  F  AllInfected =9] 
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 The expected number of rounds taken to reach, from the initial state, a state where a 

xed number of users are infected  

R{" rounds "}=?  [  F  AllInfected =x] 

 

 The expected number of rounds taken to reach, from the initial state, a state where a 

xed user is infected (for each user)  

R{" rounds "}=?  [  F  infected0 =1] 

 

 

The results obtained here relate to verifying the properties on two specific instances 

of the model the first one with pInfect=0.01 and threshold=0.50 (referred to as Instance1) 

and the second with threshold=0.51 and pInfect=0.01 (referred to as Instance2). Instance1 

satisfies the property 1 and consequently, the actual probability returned by properties 2 

and 4 is 1.0.  

For the Instance2 we find that the property 1 is not true. As a result, in the instance of 

the model there are some configurations that do not trigger a complete cascade of the new 

behaviour. Specifically, the actual probability that eventually, all users of the Instance2 are 

infected (property 2) is equal to 0.367.   

 

 

 
Figure 4: Probability that x users are infected 

 

  

 
Figure 5: Probability that users are infected, related to their degree δ(u). 
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Figure 6: The expected number of rounds taken by a user u before his infection, related to their 

degree δ(u) 

 
 

3. CONCLUSION 

In this short paper we explored diffusion models in online social networks. Using 

Prism as a model checker, we checked our model considering the properties as defined in 

section 2 on two specific instances of the model the first one with pInfect=0.01 and 

threshold=0.50 (referred to as Instance1) and the second with threshold=0.51 and 

pInfect=0.01 (referred to as Instance2). Instance1 satisfies the property 1 and consequently, 

the actual probability returned by properties 2 and 4 is 1.0.  

Chart in Figure 4 compares, for the two instances, the actual probability that a fixed 

number of users (x) are infected. Chart in Figure 5 shows the probability of infection of 

each user of the Instance2, related to his degree (property 4). As long as the probability of 

infecting all users of the Instance2 is less than 1, the expected number of rounds returned 

by properties 5, 6 and 7 is returned by property is equal to infinity (∞). For Instance1, the 

expected number of rounds taken to reach a state where all users are infected is 46.76 

(property 5 or 6). Chart in Figure 6 shows the expected number of rounds taken by each 

user u to reach a state where he is infected, compared with his degree δ(u). Finally, we 

have seen how the expected number of rounds taken by a user, before his infection, 

increases with his degree. 
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