
 
 

 

Institute of Advanced Engineering and Science 

w  w  w  .  i  a  e  s  j  o  u  r  n  a  l  .  c  o  m 

 
International Journal of Information & Network Security (IJINS) 

Vol.1, No.2, June 2012, pp. 110~118 

ISSN: 2089-3299      110 

  

Journal homepage: http://iaesjournal.com/online/index.php/ IJINS 

AES Encryption Algorithm Hardware Implementation 

Architecture: Resource and Execution Time Optimization  
 

 

Samir El Adib and Naoufal Raissouni 
National School for Applied Sciences of Tetuan, University Abdelmalek Essaadi (www.UAE.ma). 

Innovation & Telecoms Engineering Research Group. Remote Sensing & Mobile GIS Unit. 

Mhannech II, B.P 2121 Tetuan, Morocco 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 6th, 2012 

Revised Jun 20th, 2012 

Accepted Jun 26th, 2012 

 

 In the present paper we present an architecture to implement Advanced 

Encryption Standard (AES) Rijndael algorithm in reconfigurable hardware. 

Rijndael algorithm is the new AES adopted by the National Institute of 

Standards and Technology (NIST) to replace existing Data Encryption 

Standard (DES). Compared to software implementation, hardware 

implementation of Rijndael algorithm provides more physical security as 

well as higher speed. The first factor to be considered on implementing AES 

is the application. High-speed designs are not always desired solutions. In 

some applications, such as mobile computing and wireless communications, 

smaller throughput is demanded. Architecture presented uses memory 

modules (i.e., Dual-Port RAMs) of Field-Programmable Gate Array (FPGAs) 

for storing all the results of the fixed operations (i.e., Look-Up Table), and 

Digital Clock Manager (DCM) that we used effectively to optimize the 

execution time, reduce design area and facilitates implementation in FPGA. 

The architecture consumes only 326 slices plus 3 Block Random Access 

Memory (BRAMs). The throughput obtained was of 270 Mbits/s. The target 

hardware used in this paper is Spartan XC3S500E FPGA from Xilinx. 

Results are presented and compared with other reference implementations, as 

known from the technical literature. The presented architecture can be used 

in a wide range of embedded applications. 
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1. INTRODUCTION  

Security of data is becoming an important factor for a wide spectrum of applications, including communication 

systems, wireless devices, and many other embedded applications. Resistance against known attacks is one of the 

main properties that an encryption algorithm needs to provide. When a new attack is demonstrated as effective (also 

in term of computation time), the update of the encryption system is a real necessity to guarantee the security of 

data. 

In October 2000, National Institute of Standards and Technology (NIST) selected Rijndael [1] as the new 

Advanced Encryption Standard (AES) [2], in order to replace the old Data Encryption Standard (DES) [3] [4]. It 

offers a good „„combination of security, performance, efficiency, implementability and flexibility‟‟ [5]. AES 

specifies a Federal Information Processing Standards (FIPS) approved cryptographic algorithm that is used to safely 

protect electronic data [6]. The selection process included performance evaluation on both software and hardware 

platforms and many hardware architectures were proposed. However, most of these architectures simply transcript 

the algorithm into hardware designs without relevant optimizations and tradeoffs. Moreover, the throughput and area 
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constraints considered are often unrealistic as shown by the recently published results. In this paper, we present an 

architecture for the AES Rijndael algorithm based on three techniques to improve the implementation of the AES 

Rijndael Algorithm: 

- Look-Up Table to facilitate implementation. 

- Digital Clock Manager (DCM) to optimize execution time. 

- Memory modules (Dual-Port RAMs) to reduce design area. 

The proposed architecture uses only a relatively small area and lower execution time and it can be used for a 

wide range of applications. However, most of publications on implementations of AES only provide performance 

and area figures without interfaces and registers. 

 

 

2. DESCRIPTION OF AES  RIJNDAEL ALGORITHM  AND PREVIOUS WORK 

 

2.1. Description of AES  Rijndael Algorithm 

The Rijndael is a block cipher, which operates on different keys and block lengths: 128 bits, 192 bits, or 

256 bits. The input to each round consists of a block of message called the state and the round key. It has to be noted 

that the round key changes in every round. The state can be represented as a rectangular array of bytes. This array 

has four rows; the number of columns is denoted by Nb and is equal to the block length divided by 32. The same 

could be applied to the cipher key. The number of columns of the cipher key is denoted by Nk and is equal to the 

key length divided by 32. The cipher consists of a number of rounds - that is denoted by Nr - which depends on both 

block and key lengths. Each round of Rijndael encryption function consists mainly of four different transformations: 

SubByte, ShiftRow, MixColumn and key addition. On the other hand, each round of Rijndael decryption function 

consists mainly of four different transformations: InvSubByte, InvShiftRow, InvMixColumn, and key addition. The 

output of the above transformations is called the 'State'. The state consists of the same byte length as each block of 

the message. The description of the four transformations of the Rijndael cipher and their inverses will be given 

below. 

 

State =  

             

          

         
         

                                                                                                     

 

2.1.1. SubByte Transformation 

The SubByte transformation is a non-linear byte substitution, operating on each of the state bytes 

independently. The SubByte transformation is done using a once-pre-calculated substitution table called S-box. That 

S-box table contains 256 numbers (from 0 to 255) and their corresponding resulting values. The SubByte 

transformation applied to the State can be represented as follows: 

 

SB(State) =  

                            
                          
                         
                         

                                                                       

 

2.1.2. InvSubByte Transformation 

  The InvSubByte transformation is done using a once-pre-calculated substitution table called InvS-box. That 

table (or InvS-box) contains 256 numbers (from 0 to 255) and their corresponding values. 

 

2.1.3. ShiftRow Transformation 

 In ShiftRow transformation, the rows of the state are cyclically left shifted over different offsets.  Row 0 is not 

shifted; row 1 is shifted over one byte; row 2 is shifted over two bytes and row 3 is shifted over three bytes. Thus, 

the ShiftRow transformation proceeds as follows: 
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SR(SB (State)) =  

                            
                          
                         
                         

                                                       

 

2.1.4. InvShiftRow Transformation 

In InvShiftRow transformation, the rows of the state are cyclically right shifted over different offsets. Row 0 is 

not shifted, row 1 is shifted over one byte, row 2 is shifted over two bytes and row 3 is shifted over three bytes. 

 

2.1.5. MixColumn Transformation 

  In Mix-Column, the columns of the state are considered as polynomials multiplied by a fixed polynomial  

    , given by: 

 

                                      .                                                                                
 

The MixColumn transformation can be written in a matrix multiplication as follows: 

 

R = MC(SR(SB (State))) =  

                

                

                

                

    

                            
                          
                         
                         

                    

 

2.1.6. InvMixColumn Transformation 

In InvMixColumn, the columns of the state are considered as polynomials multiplied by a fixed polynomial 

    , defined by:  

 

                                                                                                                        
                                                                                                                             
 

2.1.7. AddRoundKey  

AddRoundKey performs an addition (bitwise XOR) of the State with the RoundKey: 

 

AK (R) =  

             

          

         

         

    

                 

              

             
             

                                                

 

 

The inverse operation (InvAddRoundKey (IAK)) is trivial. 

 

RoundKeys are calculated with the key schedule for every AddRoundKey transformation. In AES-128, the 

original cipher key is the first (   ) used in the additional AddRoundKey at the beginning of the first round. 

   , where       , is calculated from the previous       . Let             be the column j of the 

       and let      be the column j of the     . Then the new       is calculated as follows: 

 

                               

               
               
               

 

The round constant        contains values                               . Rot is a function that takes a four byte input 

and shifted over one byte. 
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2.2. Previous work  

 

There exist many presentations of hardware implementations of Rijndael AES algorithms in literature. In 

2001, Elbirt et al., [7] compared five candidate algorithms (including Rijndael algorithm) for AES using Field-

Programmable Gate Array (FPGA) implementations. Later FPGA implementations demonstrate better utilization of 

FPGA resources. Several architectures using dedicated on-chip memories implementing S-boxes and T-boxes were 

developed [8] [9] [10] [11] [12]. Recent research focused on fast pipelined implementations in both FPGA [13] [14] 

[15] [16] [17] [18]. Unfortunately, most of those implementations are too costly for practical applications.  

 

3. EXISTING  AES  ARCHITECTURES  

Various architectures exist to realize the AES encryption. Among them, the rolling architecture and the 

unrolling architecture (see Figures 1 and 2, respectively). 

 

 
Figure 1.  Rolling architecture of AES Encryption with 128 bit key 

 

 
Figure 2.  Unrolling architecture of AES Encryption with 128 bit key 

The rolling architecture shown in Figure 1 uses a feedback structure where the data are iteratively 

transformed by the round function. This approach occupies small area, but achieves low throughput [19]. In the 

unrolling architecture shown in Figure 2 the rounds blocks are pipelined and the inserted pipeline registers allow 

simultaneous operation of all 11 round blocks. Due to the pipeline, this approach achieves a high throughput, but 

requires large area [20] [21]. 

 

 

4. PROPOSED AES HARDWARE ARCHITECTURE 

The approach we propose allows the computation of the entire iteration of AES using look-ups tables and XOR 

operations. These precomputed look up tables represent the combined operation of the Subbytes and the Mixcolumn 

transformations. Compared to the 8x32 bits wide T-box look up tables, the tables proposes are of the size of 8x8 

bits. The description described below explains how tables look-ups and the corresponding AES round operations are 

obtained: As also mentioned in    , the consecutive SubByte and MixColumn operations on the first quarter of the 

round can be expressed as: 

 

                                                                                                (9) 

       

                
                
                
                

                                                                                           (10) 
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       is the data transformed, and       is the matrix of multiplicative vectors. The above multiplication may be 

performed by using logarithm and anti-logarithm table (see Tables 1 and 2, respectively). 

 

Table 1. Logarithm Table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example:         

   can be computed by using logarithm tables in the following way: 

 

                                                                                                                                      
 

The mix-columns transformation computes each row separately. In order to compute the matrix 

multiplication of expression (9) and exploiting the expression (11), all of the bytes are substituted by using the 

logarithm tables (addition rather than a multiplication). If we define four tables (T0 to T3) containing 256 numbers 

(from 0 to 255) data as: 

 

Tables for encryption: 

 

Tables for Decryption: 

                                      

                                     

                                     

                                     

                                       

                                      

                                      

                                      

 

The final result will obtain by XORing the output of four tables (T0 to T3) as given by the following expression: 

 

  0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 0 0 19 1 32 2 1A C6 4B C7 1B 68 33 EE DF 3 

1 64 4 E0 E 34 8D 81 EF 4C 71 8 C8 F8 69 1C C1 

2 7D C2 1D B5 F9 B9 27 6A 4D E4 A6 72 9A C9 9 78 

3 65 2F 8A 5 21 F E1 24 12 F0 82 45 35 93 DA 8E 

4 96 8F DB BD 36 D0 CE 94 13 5C D2 F1 40 46 83 38 

5 66 DD FD 30 BF 6 8B 62 B3 25 E2 98 22 88 91 10 

6 7E 6E 48 C3 A3 B6 1E 42 3A 6B 28 54 FA 85 3D BA 

7 2B 79 A 15 9B 9F 5E CA 4E D4 AC E5 F3 73 A7 57 

8 AF 58 A8 50 F4 EA D6 74 4F AE E9 D5 E7 E6 AD E8 

9 2C D7 75 7A EB 16 B F5 59 CB 5F B0 9C A9 51 A0 

A 7F C F6 6F 17 C4 49 EC D8 43 1F 2D A4 76 7B B7 

B CC BB 3E 5A FB 60 B1 86 3B 52 A1 6C AA 55 29 9D 

C 97 B2 87 90 61 BE DC FC BC 95 CF CD 37 3F 5B D1 

D 53 39 84 3C 41 A2 6D 47 14 2A 9E 5D 56 F2 D3 AB 

E 44 11 92 D9 23 20 2E 89 B4 7C B3 26 77 99 E3 A5 

F 67 4A ED DE C5 31 FE 18 D 63 8C 80 C0 F7 70 7 

Table 2.  Anti-Logarithm Table 

 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 1 3 5 0F 11 33 55 FF 1A 2E 72 96 A1 F8 13 35 

1 5F E1 38 48 D8 73 95 A4 F7 2 6 0A 1E 22 66 AA 

2 E5 34 5C E4 37 59 EB 26 6A BE D9 70 90 AB E6 31 

3 53 F5 4 0C 14 3C 44 CC AF D1 68 B8 D3 6E B2 CD 

4 4C D4 67 A9 E0 3B 4D D7 62 A6 F1 8 18 28 78 88 

5 83 9E B9 D0 6B BD DC 7F 81 98 B3 CE 49 DB 76 9A 

6 B5 C4 57 F9 10 30 50 F0 0B 1D 27 69 BB D6 61 A3 

7 FE 19 2B 7D 87 92 AD EC 2F 71 93 AE E9 20 60 A0 

8 FB 16 3A 4E D2 6D B7 C2 5D E7 32 56 FA 15 3F 41 

9 C3 5E E2 3D 47 C9 40 C0 5B ED 2C 74 9C BF DA 75 

A 9F BA D5 64 AC EF 2A 7E 82 9D BC DF 7A 8E 89 80 

B 9B B6 C1 58 E8 23 65 AF EA 25 6F B1 C8 43 C5 54 

C FC 1F 21 63 A5 F4 7 9 1B 2D 77 99 B0 CB 46 CA 

D 45 CF 4A DE 79 8B 86 91 A8 E3 3E 42 C6 51 F3 0E 

E 12 36 5A EE 29 7B 8D 8C 8F 8A 85 94 A7 F2 0D 17 

F 39 4B DD 7C 84 97 A2 FD 1C 24 6C B4 C7 52 F6 1 
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Figure 5.  AES Encryption Architecture 

 

The size of one Ti table is 2 Kbits for encryption. A Block Random Access Memory (BRAMs) has enough 

space to implement both tables. The architecture requires only 2 Block RAMs to implement of the combination of 

SubByte followed by MixColumn. This is implemented by using the existing Dual-Port RAMs by adding a doubled 

clock and some extra logic. 

The detail of our proposed rolling architecture is shown in Figure 5. The BRAM is configured as Dual-Port 

ROM (Read Only Mode) to access the 8-bit lookup values corresponding to the 8-bit input addresses. Read 
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operation uses one clock edge and the data in the memory location selected by the addresses appear on the output 

ports after the BRAM access time. 

DCM is used to generate two clocks; CLK0 (same frequency as that of input source clock) and CLK2X 

(double to the input source frequency) from the input clock source CLKIN. The CLK2X will enable the BRAM to 

output twice during one complete cycle of CLK0. At the input side three 2×1 multiplexers M1, M2 and M3 are 

being used to select the corresponding input data. The controlling signal for the multiplexer M3 is CLK0. 16  8-bit 

registers R0–R15  are being used to store the BRAM‟s output at both rising and falling edge of CLK0; R0–R3 and 

R8–R11 are positive edge triggered while R4–R7 and R12–R15 are negative edge triggered. All the 16 8-bit 

register‟s output are XORed to get the final output as shown in Figure 5. 

Control unit based FSM (Finite State Machine), used to generate control signals of all multiplexers for the 

correct execution of ShiftRows transformation. 

Key Generator: This block is responsible for creating the keys for each round as shown in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Block Diagram of Key_schedule Module 

 

5. SYNTHESIS AND IMPLEMENTATION RESULTS 

The architecture of AES using Look-Up Tables, Memory modules (Dual-Port RAMs) and Digital Clock 

Manager (DCM) is done using VHDL and implemented in a Xilinx Spartan3E -4  XC3S500E FPGA. Table 3 shows 

the synthesis and mapping results of AES design for encryption of 128- bit data with AES-128 key. It describes the 

selected target Xilinx FPGA device, encryption throughput achieved and the overall device utilization. 

 

Table 3.  Implementation Results 

 

 

 

 

 

 

 

 

 

 
 

6. PERFORMANCE AND COMPARISONS 

Target FPGA device Spartan3E XC3S500E -4 FT256 

Max. clock frequency  168.765MHz 

Number of Slices 326 

Block RAMS 3 

Cycles 80 

Encryption throughput  270 Mbps 
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The design was implemented on a Xilinx Spartan3E XC3S500E-4 FT256 FPGA devices. It occupies only 3 

BRAMs and 326 Slices. Our design is operating at a clock frequency of 168.765 MHz which is still high enough for 

real time cryptographic applications and offers a throughput of 270 Mbps. 

Table 4 details the comparison results with previous FPGA implementations using look up tables. The results 

clearly show that our proposed implementation achieves a good balance between hardware area and design 

performance. 

Table 4. Performance comparisons in encryption 
Author Device Slices BRAMs Throughput (Mbps) Performance (Mbps/Slices)  

Labbe et al. [24] XCV1000-4 2151 4 390 0.18 

Saggesse et al. [25] XCVE2000-8 446 10 1000 2.3 

Chodwiec et al. [26] XC2530-5 222 3 139 0.62 

Chodwiec et al. [26] XC2530-6 222 3 166 0.74 

Standaert et al.[27] VIRTEX2300E 542 10 1450 2.6 

Segreo et al. [28] XCV-100-4 496 10 417 1.49 

Segreo et al. [28] XCV-600E-8 496 10 743 0.49 

Saqib [23] XCV812E 2744 0 258.5 0.09 

Zambreno[22] Virtex-2 1780 0 1000 0.56 

Our XC3S500E -4 326 3 270 0.83 

 

7. CONCLUSION 

The new architecture presented allows the implementation of the AES Rijndael Algorithm using an approach 

which includes modules memory and lookup tables. Specific applications for this circuit are in wireless LANs, 

cellular phones and smart cards. For instance, this circuit can be successfully used for wireless LAN in which the 

maximum throughput required is of 128 Mbit/s, lower than the throughput obtained from measurements. Our 

implementation achieves a throughput of 270 Mbps and uses a total of 326 slices of a Spartan3E  FPGA. The results 

clearly show that our proposed implementation achieves a good balance between hardware area and design 

performance compared with other researchers. 
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