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 In this paper an Evolutionary Computation based energy efficient novel key 

organization (ECEEKO) policy has been proposed by incorporating 

computational safety, power management and restricted usage of memory in 

wireless communication. Generating functions of secured key are generated 

from the sink node through evolutionary computation and distribute to the 

header and sensor nodes. On agreeable particular power consumption 

constraints each potential key generating function (KGF) is encoded as a 

chromosome. Using entropy measure fitness is calculated to assess key 

distribution. Common keys are assembling by headers and sensor nodes. 

Performance analysis of the ECEEKO approach and comparison study with 

several existing methods has been done.   
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1. INTRODUCTION  

Hierarchical sensor networks (HSN) [4] is a category of a wireless sensor networks (WSN) [2, 5, 10, 

18] comprises of sensor nodes, header and sink nodes. Another category of WSN is distributed sensor 

networks (DSN) which is consist of sensor nodes and sink node. In HSN header and sink node are differ in 

terms of energy, memory and computational capability. In sensor nodes encryption algorithms  are infeasible 

because sensor nodes are limited by computing capability, memory size and battery life. So, sensor nodes 

cannot handle complex exponentiation for encryption using limited battery life. Security of WSN is essential 

when sensor nodes are deployed in hostile and malicious environment. But quite a few security schemes 

mainly suffer from optimal usage of memory space and energy. Proposed scheme handles this problem by 

optimizing memory usage and power consumption using evolutionary computation. 

 

2. PROBLEM STATEMENT 

Several security schemes have been proposed for pre distribution of key [6, 7, 8, 12, 13, 15, 21], 

group key distribution [11], integrated hierarchical key deployment [9] and key renewal [6, 14, 16] in sensor 

networks. But this security schemes suffers from efficient power and memory usage. To resolve this problem 

a novel and efficient technique has been proposed in this paper which optimizes the power and memory 

usage and provides good computational security using evolutionary computation. 

 

3. RELATED WORK 

A number of security algorithms were proposed for providing security in sensor network. Blom‟s 

proposed key pre-distribution method with key size k and network size N which takes k*N memory space to 

reach full connection that is quite large [21]. To reduce memory usage in Blom‟s scheme a new scheme has 

been proposed by DU et al. known as DDHV-D [3]. In this scheme the neighboring nodes are checked for 

storing key. A node did not waste its memory by storing key of a node which is not its neighbor. This scheme 
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also uses deployment knowledge of reducing memory usage at the time pre distribution of key for 

constructing neighboring connection.  Another scheme proposed by Chien-Lung Wang et al. [1] has also 

some shortcomings like if there are m number of genes in a gene pool  then total  number of possible 

chromosomes (KGF) is only m!, so total m! number of keys  are possible from m! chromosomes and  f 

(f<<m!) keys are selected for evaluation.  Also this technique does not support mutation within a gene. Rui 

Zhou et al. [23] proposed a novel key management scheme, which utilizes Elliptic Curve Cryptography and 

the t-degree trivariate symmetric polynomial in the design of an efficient key management scheme for sensor 

nodes. Chen Chen et al. [24] have proposed a scheme which follows the architecture of the three layers in 

LOCK. 

In this paper, evolutionary computation guided optimized power and efficient memory usage key 

organization scheme in a hierarchical sensor network has been proposed. In this method using evolutionary 

computation strategy key generating functions (KGF‟s) i.e. chromosomes are generated by sink nodes for 

rekeying on sensor nodes under energy consumption constraints. The functions are further divided into genes 

which are then embedded into sensor nodes and headers before deployment. As sensor nodes are deployed, 

the headers will randomly assemble the common genes and send the series to sensors for rebuilding the 

KGFs (chromosomes) for rekeying. The rekeying functions are rebuilt in each predefined interval, such that 

it would be difficult for an attacker to crack the functions in time. Besides, it is also energy-efficient in that it 

consumes the energy for rekeying only while assembling a new key in a sensor node. The proposed 

evolutionary computation rekeying scheme can thus not only meet the constraints of low energy and little 

memory but also fulfill the security requirement.  

 

4. PROPOSED ECEEKO SCHEME 

In ECEEKO technique shortcomings of the existing methods has been resolved by introducing 

following features: 

a) In ECEEKO technique each gene is made of operands and operators. For example gene G1= + p q. 

i.e. (p + q). Collection of such type of genes constructs a gene pool. For example                                 

Gene pool1= {G0, G1, G2,...., Gm}. Where gene G0 consist of linking operators like +, -,* etc for 

concatenating at most m number of genes satisfying power consumption constraints. Initially this 

scheme consider a set of gene pools like {Gene pool1, Gene pool2, ... , Gene poolp}. If a gene pool 

has m number of genes and n number of linking operators then this gene pool can produce                       

(m! + n! -1) number of different chromosomes by linking each gene with other in different 

combination using linking operators. From this (m! + n! -1) number of different chromosomes only f 

(f << (m!+n!-1)) chromosomes are selected for evaluation because evaluation of distribution of this 

(m!+n!-1) chromosomes are impossible. Entropy measurement which is basically a fitness function 

is used for selecting best chromosome among other chromosomes in a particular gene pool. This 

best fitted chromosome is known as KGF and value produce from this KGF is considered as a key. 

In this way using evolutionatry computation from p number of different gene pools at most p 

number of best fitted KGF can be constructed. Again from this p number of KGF‟s best KGF having 

maximum entropy value is selected. Now genes belongs to the best fitted KGF‟s are transmitted to 

the header nodes. Header nodes can use different combination of these genes for producing different 

key value. Sensor nodes belonging to a common header node use same gene combination for 

producing a common key value which is used by all sensor nodes under this header node.  

b) In chromosome construction strategy one new gene G0 consisting of rules for concatenating genes 

has been introduced.   

c) Concept of context has also been introduced in ECEEKO. Where contexts are formed by collecting 

genes having same type of input and returning same type of arguments. If genes G1 and G2 have 

operators that take real arguments and return Boolean values then these two genes will belongs to 

same context. Similarly, genes having operators which takes Boolean arguments and returning 

Boolean values are also belongs to same context. 

d) In ECEEKO if there are m number of genes and n numbers of conacatinating operators then total 

possible chromosomes i.e. KGF‟s (different gene combination) will be (m! + n! - 1). Whereas 

Chien-Lung Wang et al. proposed method can generate only m! where m is the number of code 

slices(genes). 

e) Crossover of muligenic chromosome with different contexts has been proposed in ECEEKO.  
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f) Mutation within a gene as well as within a chromosome has also incorporated in the proposed 

method. If mutation point falls within a gene then at the mutation point the exchanged symbols must 

come from the same context of operands and operators. 

 

In this hierarchical sensor network model a hierarchical tree structure is maintained where sink node 

is placed at the root. Header nodes are become intermediate place holder of the tree and all the sensors 

nodes are placed at the leaf level.   

 

 Sink node (Root node) - It acts as a base station and provides the access to the outside for the WSN. 

KGF‟s are generated from the sink for generating keys in the rekeying strategy. Sink node initially 

starts with number of genes, and then find out the good combination of genes (chromosome) using 

evolutionary computation. Set of binary operators and operands are use to form a gene. Several 

genes are concatenated in several combinations using predefine binary operators to form a KGF 

(chromosome).  This sink node sends m genes belong to the best chromosome (KGF) to the header 

nodes before deployment. It is assumed that the sink nodes are secure and powerful. It means that 

the sink node is located in a secure place and has limitless computational capability, power, 

memory, and communication bandwidth. 

 

 Header node (Intermediate node) – It has larger memory size, more amounts of energy and more 

powerful computational capability than sensor nodes. It delivered the aggregated results to sink node 

after combining the monitored data from the sensor nodes. The function of header nodes to 

recognize which set of sensor nodes belongs to their area and select common  set of genes 

combination (chromosome) for the sensor nodes belonging to a particular header node and transfer 

them to the sensor nodes. 

 

 Sensor nodes (Leaf node) - It has small amount of power and its functionality is to monitoring the 

environment and sends the gathered information to the header nodes. Each sensor node generates 

new key using several possible gene combination. The functions of sensor nodes include the 

execution of simple operations, like bitwise operations, fundamental arithmetic operations, and shift 

operations, and generate keys according to the instructions from headers. Initially it is assume that 

before the first rekeying a sensor node is completely secure.  It means in within a certain t time, an 

adversary can not compromise any sensor node. An adversary may, however, compromise any 

sensor node after the t time. The sensor nodes and their headers thus have to finish the first rekeying 

process within t time. 

 

In ECEEKO scheme each gene comprises of one binary operator and two operands. Different genes 

are concatenated using different operators and forms different chromosomes. Different chromosomes have 

different key distributions and energy consumptions. In this scheme evolutionary computation is used to find 

out good set of KGF having a key distribution as uniform as possible under low energy consumption. 

Distribution of key value is observed by proposed entropy calculation. 

 

Proposed ECEEKO scheme has 2 phases.  These are 

 

 Construction of good KGF: In this phase an initial population is created using c numbers of 

chromosomes each having m numbers of genes. These m genes are concatenated with each other in 

different possible combination with the help of predefined set of binary operators to form pool of 

chromosomes. This pool comprises of all the combination of predefined operators and genes. 

Depend on power consumption constraints appropriate chromosomes get selected for construction 

of mating pool. Different evolutionary operators like crossover and mutation are applied on best 

parent chromosomes to form new child chromosomes. In this way good offspring gets created and 

used as KGF.   

 Rekeying: In this phase best chromosomes generated from previous phase delivered to the headers 

and sensors for rekeying.  
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4.1 Chromosome Construction 

Each set of genes is encoded as a chromosome. Several encoding techniques have already been 

proposed earlier [17, 20]. Genes are the predefined set of binary operators and operands generated by the sink 

nodes for constructing KGFs. In a simple scenario, to obtain the chromosome, sub-expressions encoded by 

the genes may be simply aggregated by a linking function. A more advanced version uses an extra special 

gene made up of operators used to link the other genes. The gene G0 from table 1 is the linking gene and the 

whole chromosome encodes the expression (p * q) + (r / s) - (t + u). 

 
Table 1. Expression encoded by multigenic chromosome 

 
Gene G0 G1 G2 G3 

Symbols +  - *  p q / r s + t u 

 

These extra genes may also take part in the evolutionary process and evolve on the same rules as the 

other genes. Gene pool is formed from all combinations of operators and operands. From that pool some 

arbitrary genes are selected to construct a chromosome. Using different combinations of genes different 

chromosomes can be constructed. With 3 different genes and 2 different binary operator (3! + 2! -1) = 7 

possible combinations (chromosome) can be generated. In general if there are m number of genes and n 

number of concatenating operators then (m! + n! -1) possible combination (Chromosome) can be generated. 

A more general scenario is obtained when the encoded expressions are made up of operands and operators of 

different types. The operators of each gene type are homogenous, meaning they all take arguments of the 

same type as inputs and they all return the argument of same type. The operators of each gene type are of the 

same type as the arguments the operators take. They may be simple symbols of required types or references 

to other genes where the aggregation operator also returns a compatible type. In the operand set there is also 

found the set of gene references that point to genes where operators return the compatible type. The 

multigenic chromosome in table 2 shows an expression containing: 

 

 Context C1- In linking gene G0, operators that take Boolean arguments and return Boolean values 

 Context C2- in genes G1, G2 and G3 – operators that take real arguments and return Boolean values 

 Context C3- in genes G4, G5, G6 – operators that take real arguments and return real values 

 

Table 2. Multigenic chromosome (a<G3)||(G4>G5)&&(b>c) with linking gene G0 

 
G0 G1 G2 G3 G4 G5 G6 

||  &&  G1  G2  G3 < a G6 >  G4  G5 >  b c +  d f - g h *  i j 

 

The encoded expression is: (a<G3)||(G4>G5)&&(b>c) which further is expanded by dereferencing 

into (a<(i*j)) || ((d+f)>(g-h)) && (b>c) which is valid regarding the compatibility of types. Judging by the 

above three contexts are identified. 

 The context C1 of operators taking Boolean arguments and returning Boolean values;               

Operators={ ||, && } Operands ={ G1, G2, G3} 

 The context C2 of operators taking real arguments and returning Boolean values;                           

Operators = { <,>}, Operands = {a, b, c, d, f, g, h, i, j, G4, G5, G6} 

 The context C3 of operators taking real arguments and returning real values;                                  

Operators = { +, -} Operands={ a, b, c, d, e, f, g} 

This approach permits a linear representation of complex expressions. 

4.2 Power Consumption 

If average power consumption of each rekeying is 100 units and if rekeying number is expected as 

100 times then 10000 units will be total power for rekeying in a sensor node. Each operator takes certain unit 

for execution. 

 Operator „+‟ and „-‟ will take one unit because its execution takes one time unit. 

 Operator „*‟ can be think of collection of several „+‟ operators. So power consumption for single „*‟ 

is equal to number of „+‟ operation to be performed. 

 Operator „/‟ can be thinkof collection of several „-‟ operators. So power consumption for single „-‟ is 

equal to number of „-‟operation to be performed. 
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But „*‟ and „/‟ and at least takes one time unit as an execution time so, consume at least one unit. Now 

„*‟ and „/‟ belongs to same priority level and has the highest priority among all operators. Operator „+‟ and    

„-‟ has the 2
nd

 highest priority and both belongs to the same priority class. Logic operators have the lowest 

priority. 

Each sensor node has equal amount of limited power primarily. This rekeying operation must be less 

power consuming in order to perform other jobs in sensor node with rest of the power. But a less power 

consuming rekeying operation produce a simple KGF which will easily be cracked. Thus, an appropriate 

KGF should be constructed by using following power consumption constraints given in equation 1. 

 

                                  

UiL PowerConChromosomePowerConPowerCon  )(                                (1) 

 

                                                                           

gpPowerConL *1                                                          (2) 

 

                                                           

tolerencegpPowerConU  *2                                                     (3) 

where, 

1P = average allowed minimum power consumption value of an operator for constructing not too simple 

chromosome. 

2P = average allowed maximum power consumption value of an operator for constructing not too power 

consuming complex chromosome. 

g = no. of genes. 

Let  )( iChromosomePowerCon  = (1 * 4) + (6 / 2) - (5 + 7) 

Let 1P and 2P set as 4, number of g is 3 and tolerance is 6 then 

)63*4()()3*4(  iChromosomePowerCon  

 

Power consumption of each gene depends on its operator. A single chromosome can be made of 

several genes. Different combination of gene can made several versions of chromosomes with different 

power consumption (takes different execution time). So those chromosomes violated power consumption 

constrained are ruled out. 

 

4.3 Initial Population 

In this phase after with an optimal power consumption constraints, chromosomes are arbitrarily 

generated using chromosome construction rules for creating chromosome pool. 

 

4.4 Fitness Calculation 

Fitness function is essential for producing quality solution. Using fitness function best parents set of 

genes (chromosome) are selected from pool of genes to produce good set of genes (chromosome). Proposed 

ECEEKO technique entropy function [2, 22] is used for fitness calculation of a chromosome. m number of 

genes and n number of linking operators may be  produced at most (m!+n!-1) chromosomes but evaluation of 

distribution of this much of keys are impossible. Only f (f << (m!+n!-1)) keys are selected for evaluation. 

The set of f randomly selected keys are {k1, k2,…, kf}with probabilities (p1, p2,…, pf,). 
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                                            (5) 

 

Using equation (5) entrophy of a gene pool is calculated which is the fitness measure for that 

particular gene pool.For more uniform and unbiased key distribution maximum fitness value is required. 

For example, consider genes G1 =* 1 4, G2 = / 6 2, G3 = + 5 7 and G4 = - 9 2 with 3 linking binary operators            

+, -, *. Using these 4 genes and 3 linking operator‟s total (4! + 3! -1) =29 possible valid chromosomes can be 

constructed in the following way.   

 4 genes G1, G2, G3, G4 can be linked 3! = 6 ways applying different combinations of 3 linking 

operators maintaining the gene order (G1, G2, G3, G4). So if there are m different linking operators 
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then m! different chromosomes may be produced in this way. Table 3 shows 6 different such 

chromosomes.    

Table 3.  Shows 6 different chromosomes having same gene order. 

 

(G1+G2-G3*G4) (G1+G2*G3-G4) (G1-G2+G3*G4) (G1-G2*G3+G4) (G1*G2+G3-G4) (G1*G2-G3+G4) 

 

 Using same linking operators +, -, * these 4 genes G1, G2, G3, G4 can be linked with each other in 

4!=24 different ways applying same order of  linking operators but different gene order shown in 

table 4. If there are n different genes then n! different chrosomes can be constructed. 

 

Table 4. Twentyfour different chromosomes having same order of linking operators                                                            

but different order of genes. 

(G1+G2-G3*G4) (G2+G1-G3*G4) (G3+G2-G1*G4), (G4+G1-G2*G3), 

(G1+G2 - G4*G3) (G2+G1-G4*G3) (G3+G2-G4*G1) (G4+G1-G3*G2), 

(G1+G3 -G2 *G4) (G2+G3-G1*G4) (G3+G1-G2*G4), (G4+G2-G1*G3), 

(G1+ G3 -G4*G2) (G2+G3-G4*G1) (G3+G1-G4*G2), (G4+G2-G3*G1), 
(G1+ G4-G2*G3) (G2+G4-G1*G3) (G3+G4-G1*G2), (G4+G3-G1*G2), 

(G1+ G4-G3*G2) (G2+G4-G3*G1) (G3+G4-G2*G1), (G4+G3-G3*G1). 

 

From the avove two processes, it is observed that if there are m number of genes and n numbers of 

linking operators then total possible chromosomes (different gene combination) will be (m! + n!)-1. 

Deduction of 1 because presence of 1 common gene in both the process i.e. (G1+G2-G3*G4) in the above 

example.  For each combination of genes and operators in particular gene pool entropy value is calculated. 

Example of entropy calculation is shown in the following.    

  

 Chromosome 1: If linking gene G0 = + - * G1 G2 G3 G4  then chromosome key value will be          

                                  = (1*4) + (6 / 2) - (5 + 7) * (9-2) = 4+3-12*7 = -77 (as shown in table 5.) 

           Table 5. Chromosome with linking gene G0 = +   -  *  G1  G2  G3  G4 

G0 G1 G2 G3 G4 

+  -  *  G1  G2  G3 G4          *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 2: If linking gene G0 = + * - G1 G2 G3 G4  then chromosome key value will be 

= (1 * 4) + (6 / 2) * (5 + 7) - (9-2) = 4+3*12-7 = 33 (as shown in table 6.) 

Table 6. Chromosome with linking gene G0 = +  *  -  G1  G2  G3  G4 
G0 G1 G2 G3 G4 

+  *  - G1 G2 G3  G4 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 3: If linking gene G0 =  * + - G1 G2 G3  G4  then chromosome key value will be 

                     = (1 * 4) * (6 / 2) + (5 + 7) - (9-2) = 4*3+12-7 = 17(as shown in table 7.)  

Table 7. Chromosome with linking gene G0 = *  +  -  G1  G2  G3  G4 
G0 G1 G2 G3 G4 

*  +  -  G1  G2  G3 G4 *  1 4 / 6 2 + 5 7 - 9 2 

 
 Chromosome 4: If linking gene G0 =  * - + G1 G2 G3 G4  then chromosome key value will be 

                      = (1 * 4) * (6 / 2) - (5 + 7) + (9-2) = 4*3-12+7 = 7 (as shown in table 8.) 

Table 8. Chromosome with linking gene G0 = *  -  +  G1  G2  G3  G4 

G0 G1 G2 G3 G4 

 *  -  +  G1  G2  G3 G4           *  1 4 / 6 2 + 5 7 - 9 2 

 
 Chromosome 5: If linking gene G0 =  - + * G1 G2 G3  G4  then  chromosome key value will be 

                      = (1 * 4) - (6 / 2) + (5 + 7) * (9-2) = 4-3+12*7 = 85 (as shown in table 9.) 

Table 9. Chromosome with linking gene G0 =  -  +  *  G1  G2  G3  G4 
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G0 G1 G2 G3 G4 

-  +  * G1  G2  G3 G4 *  1 4 / 6 2 + 5 7 - 9 2 

 Chromosome 6: If linking gene for G0 =  - * + G1 G2 G3 G4  then  chromosome key value will be 

                      = (1 * 4) - (6 / 2) * (5 + 7) + (9-2) = 4-3*12+7 = -25 (as shown in table 10.) 

Table 10. Chromosome with linking gene G0 =  -  *  +  G1  G2  G3  G4 
G0 G1 G2 G3 G4 

 -  *  +  G1  G2  G3 G4 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 7: If linking gene for G0 =  + - * G1 G2 G4 G3  then  chromosome key value will be 

                      = (1 * 4) + (6 / 2) - (9 - 2) * (5 + 7) = 4+3-7*12 = 12 (as shown in table 11.) 

Table 11. Chromosome with linking gene G0 =  +  -  *  G1  G2  G4  G3 
G0 G1 G2 G3 G4 

 +   -  * G1  G2  G4  G3 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 8: If linking gene for G0 =  + - * G1 G3 G2 G4  then  chromosome key value will be 

                      = (1 * 4) + (5 + 7) - (6 / 2) * (9 - 2) = 4+12-3*7 = -5 (as shown in table 12.) 

Table 12. Chromosome with linking gene G0 =  +  -  *  G1  G3  G2  G4 
G0 G1 G2 G3 G4 

 +   -  * G1  G3  G2  G4 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 9: If linking gene for G0 =  + - * G1 G3 G4 G2  then  chromosome key value will be 

                      = (1 * 4) + (5 + 7) - (9 - 2) * (6 / 2)= 4+12-7*3 = -5 (as shown in table 13.) 

Table 13. Chromosome with linking gene G0 =  +  -  *  G1  G3  G4  G2 
G0 G1 G2 G3 G4 

 +   -  * G1  G3  G4  G2 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 10: If linking gene for G0 =  + - * G1 G4 G2 G3  then  chromosome key value will be 

                      = (1 * 4) + (9 - 2) – (6 / 2) * (5 + 7) = 4+7-3*12 = -25 (as shown in table 14.) 

Table 14. Chromosome with linking gene G0 =  +  -  *  G1  G4  G2  G3 
G0 G1 G2 G3 G4 

 +   -  * G1  G4  G2  G3 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 11: If linking gene for G0 =  + - * G1 G4 G3 G2  then  chromosome key value will be 

                      = (1 * 4) + (9-2) - (5 + 7) *  (6 / 2) = 4+7-12*3= -25 (as shown in table 15.) 

Table 15. Chromosome with linking gene G0 =  +  -  *  G1  G4  G3  G2 
G0 G1 G2 G3 G4 

 +   -  * G1  G4  G3  G2 *  1 4 / 6 2 + 5 7 - 9 2 

  

 Chromosome 12: If linking gene for G0 =  + - * G2 G1 G3 G4  then  chromosome key value will be 

                      =  (6 / 2) + (1 * 4) - (5 + 7) * (9 - 2) = 3+4-12*7 = -77 (as shown in table 16.) 

Table 16. Chromosome with linking gene G0 =  +  -  *  G2  G1  G3  G4 
G0 G1 G2 G3 G4 

 +   -  * G2  G1  G3  G4 *  1 4 / 6 2 + 5 7 - 9 2 

  

 Chromosome 13: If linking gene for G0 =  + - * G2 G1 G4 G3  then  chromosome key value will be 

                      = (6 / 2) + (1 * 4) - (9 - 2) * (5 + 7) = 3+4-7*12 = -77 (as shown in table 17.) 

Table 17. Chromosome with linking gene G0 =  +  -  *  G2  G1  G4  G3 
G0 G1 G2 G3 G4 

 +   -  * G2  G1  G4  G3 *  1 4 / 6 2 + 5 7 - 9 2 

  

 Chromosome 14: If linking gene for G0 =  + - * G2 G3 G1 G4  then  chromosome key value will be 

                      = (6 / 2) + (5 + 7) - (1 * 4) * (9 - 2) = 3+12-4*7 = -13 (as shown in table 18.) 

Table 18. Chromosome with linking gene G0 =  +  -  *  G2  G3  G1  G4 
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G0 G1 G2 G3 G4 

 +   -  * G2  G3  G1  G4 *  1 4 / 6 2 + 5 7 - 9 2 

 Chromosome 15: If linking gene for G0 =  + - * G2 G3 G4 G1  then  chromosome key value will be 

                      = (6 / 2) + (5 + 7) - (9 - 2) * (1 * 4) = 3+12-7*4 = -13 (as shown in table 19.) 

Table 19. Chromosome with linking gene G0 =  +  -  *  G2  G3  G4  G1 
G0 G1 G2 G3 G4 

 +   -  * G2  G3  G4  G1 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 16: If linking gene for G0 =  + - * G2 G4 G1 G3  then  chromosome key value will be 

                      = (6 / 2) + (9 - 2) – (1 * 4) * (5 + 7) = 3+7-4*12 = -38 (as shown in table 20.) 

Table 20. Chromosome with linking gene G0 =  +  -  *  G2  G4  G1  G3 
G0 G1 G2 G3 G4 

 +   -  * G2  G4  G1  G3 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 17: If linking gene for G0 =  + - * G2 G4 G3 G1  then  chromosome key value will be 

                      = (6 / 2) + (9 - 2) – (5 + 7) * (1 * 4) = 3+7-12*4 = -38 (as shown in table 21.) 

Table 21. Chromosome with linking gene G0 =  +  -  *  G2  G4  G3  G1 
G0 G1 G2 G3 G4 

 +   -  * G2  G4  G3  G1 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 18: If linking gene for G0 =  + - * G3 G2 G1 G4  then  chromosome key value will be 

                      = (5 + 7) + (6 / 2) - (1 * 4) * (9 - 2) = 12+3-4*7 = -13 (as shown in table 22.) 

Table 22. Chromosome with linking gene G0 =  +  -  *  G3  G2  G1  G4 
G0 G1 G2 G3 G4 

 +   -  * G3  G2  G1  G4 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 19: If linking gene for G0 =  + - * G3 G2 G4 G1  then  chromosome key value will be 

                      = (5 + 7) + (6 / 2) - (9 - 2) * (1 * 4) = 12+3-7*4 = -13 (as shown in table 23.) 

Table 23. Chromosome with linking gene G0 =  +  -  *  G3  G2  G4  G1 
G0 G1 G2 G3 G4 

 +   -  * G3  G2  G4  G1 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 20: If linking gene for G0 =  + - * G3 G1 G2 G4  then  chromosome key value will be 

                      = (5 + 7) + (1 * 4) – (6 / 2) * (9 - 2) = 12+4-3*7= -5 (as shown in table 24.) 

 

Table 24. Chromosome with linking gene G0 =  +  -  *  G1  G2  G3  G4 
G0 G1 G2 G3 G4 

 +   -  * G1  G2  G3  G4 *  1 4 / 6 2 + 5 7 - 9 2 

  

 Chromosome 21: If linking gene for G0 =  + - * G3 G1 G4 G2  then  chromosome key value will be 

                      = (5 + 7) + (1 * 4) – (9 - 2) * (6 / 2) = 12+4-7*3= -5 (as shown in table 25.) 

Table 25. Chromosome with linking gene G0 =  +  -  *  G3  G1  G4  G2 
G0 G1 G2 G3 G4 

 +   -  * G3  G1  G4  G2 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 22: If linking gene for G0 =  + - * G3 G4 G1 G2  then  chromosome key value will be 

                      = (5 + 7) + (9 - 2) – (1 * 4) * (6 / 2) = 12+7-4*3=7 (as shown in table 26.) 

Table 26. Chromosome with linking gene G0 =  +  -  *  G3  G4  G1  G2 
G0 G1 G2 G3 G4 

 +   -  * G3  G4  G1  G2 *  1 4 / 6 2 + 5 7 - 9 2 

  

 Chromosome 23: If linking gene for G0 =  + - * G3 G4 G2 G1  then  chromosome key value will be 

                      = (5 + 7) + (9 - 2) – (6 / 2) * (1 * 4) = 12+7-3*4=7 (as shown in table 27.) 
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Table 27. Chromosome with linking gene G0 =  +  -  *  G3  G4  G2  G1 
G0 G1 G2 G3 G4 

 +   -  * G3  G4  G2  G1 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 24: If linking gene for G0 =  + - * G4 G1 G2 G3  then  chromosome key value will be 

                      = (9 - 2) + (1 * 4) – (6 / 2) * (5 + 7) = 7+4-3*12= -25 (as shown in table 28.) 

Table 28. Chromosome with linking gene G0 =  +  -  *  G4  G1  G2  G3 
G0 G1 G2 G3 G4 

 +   -  * G4  G1  G2  G3 *  1 4 / 6 2 + 5 7 - 9 2 

  

 Chromosome 25: If linking gene for G0 =  + - * G4 G1 G3 G2  then  chromosome key value will be 

                      = (9 - 2) + (1 * 4) – (5 + 7) * (6 / 2)= 7+4-12 * 3= -25 (as shown in table 29.) 

Table 29. Chromosome with linking gene G0 =  +  -  *  G4  G1  G3  G2 
G0 G1 G2 G3 G4 

 +   -  * G4  G1  G3  G2 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 26: If linking gene for G0 =  + - * G4 G2 G1 G3  then  chromosome key value will be 

                      = (9 - 2) + (6 / 2) – (1 * 4) * (5 + 7) = 7+3-4*12 =-38  (as shown in table 30.) 

Table 30. Chromosome with linking gene G0 =  +  -  *  G4  G2  G1  G3 
G0 G1 G2 G3 G4 

 +   -  * G4  G2  G1  G3 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 27: If linking gene for G0 =  + - * G4 G2 G3 G1  then  chromosome key value will be 

                      = (9 - 2) + (6 / 2) – (5 + 7) * (1 * 4) = 7+3-12*4 =-38 (as shown in table 31.) 

Table 31. Chromosome with linking gene G0 =  +  -  *  G4  G2  G3  G1 
G0 G1 G2 G3 G4 

 +   -  * G4  G2  G3  G1 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 28: If linking gene for G0 =  + - * G4 G3 G1 G2  then  chromosome key value will be 

                      = (9 - 2) + (5 + 7) – (1 * 4) * (6 / 2) = 7+12-4*3 = 7 (as shown in table 32.) 

Table 32. Chromosome with linking gene G0 =  +  -  *  G4  G3  G1  G2 
G0 G1 G2 G3 G4 

 +   -  * G4  G3  G1  G2 *  1 4 / 6 2 + 5 7 - 9 2 

 

 Chromosome 29: If linking gene for G0 =  + - * G4 G3 G2 G1  then  chromosome key value will be 

                      = (9 - 2) + (5 + 7) – (6 / 2) * (1 * 4) = 7+12-3*4 = 7 (as shown in table 33.) 

Table 33. Chromosome with linking gene G0 =   +  -  *  G4  G3  G2  G1 
G0 G1 G2 G3 G4 

 +   -  * G4  G3  G2  G1 *  1 4 / 6 2 + 5 7 - 9 2 

 

After evaluation of these 29 different chromosomes 29 different values -77, 33, 17, 7, 85, -25, 12, -

5, -5, -25, -25, -77, -77, -13, -13, -38, -38, -13, -13, -5, -5, 7, 7, -25, -25, -38, -38, 7, 7, get produced. Though 

these values are generated from same set of genes and operators but their different combinations, they are 

togatherly formed key set i.e. KEY = {-77, 33, 17, 7, 85, -25, 12, -5, -25, -13, -38,  }. Now using equation (4) 

probabilities of selecting each key is calculated i.e. p = {1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 

1/11, 1/11} and from the equation (5) entropy of this gene pool is calculated 
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 In this way entropy of each gene pool is calculated. After that gene pool having maximum entropy 

value is selected as a KGF for a particular session. Now genes belonging to this best KGF get transmitted to 
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the header nodes. Different header nodes can use different combination of these gene values for producing 

different key values.  

4.5 Crossover Operation 

The simple one point crossover proposed in [19, 20].  A chromosome is consisting of several genes 

and each gene belongs to a particular context (discussed in section 4.1). Table 34 shows a single chromosome 

with multiple contexts. 

 

Table 34.  Multigenic chromosome with multiple gene contexts 
Context C1 C2 C2 C2 C3 C3 C3 

Gene G0 G1 G2 G3 G4 G5 G6 

 

Now, table 35 shows two multigenic chromosomes have shown made up of genes corresponding to the 

contexts where ci denotes a gene of context i, crossover at gene 2 leads to the new chromosomes shown in 

table 36, which are chromosomes of the same gene structure. 

 

Table 35. Multigenic chromosomes before crossover 

                         Crossover Point 
C1

’ C2
’ C2

’ C2
’ C3

’ C3
’ C3

’ 

C1
’’ C2

’’ C2
’’ C2

’’ C3
’’ C3

’’ C3
’’ 

 
Table 36. Multigenic chromosomes after crossover 

                         Crossover Point 

C1
’ C2

’ C2
’’ C2

’’ C3
’’ C3

’’ C3
’’ 

C1
’’ C2

’’ C2
’ C2

’ C3
’ C3

’ C3
’ 

 

In random position crossover when a crossover points falls  inside a gene then given the genes Gi 

and Gi+1 of the same context C3, as shown in table 37 crossover at position 14 leads to the situation presented 

in table 38, which further conserves the validity of the chromosome.  

 

Table 37 . Genes from a chromosomes involved in crossover at arbitrary position before the operation 

                  Crossover 

                 Point 

Gene Genei Genei+1 

Position 10 11 12 13 14 15 16 17 

Symbol + a b - * d e f 

Gene Genei Genei+1 

Position 10 11 12 13 14 15 16 17 

Symbol / m n * + p q r 

 

Table 38. Genes from chromosomes involved in crossover at an arbitrary position after the operation 

                Crossover 

                 Point 

Gene Genei Genei+1 

Position 10 11 12 13 14 15 16 17 

Symbol + a b - + p q r 

Gene Genei Genei+1 

Position 10 11 12 13 14 15 16 17 

Symbol / m n * * d e f 

  

4.6 Mutation Operation 

Single point mutation operation takes place in a context of a gene.  At the mutation point the 

exchanged symbols must come from the corresponding sets of operands and operators. Consider the gene 

from table 39 where mutation point at 14 change the symbol and the new symbol comes from same context 

of the operator or operand set. In this example the symbol at positon 14 i.e “*” change to “+” which is 

belongs to the same context.  

Table 39. Genes from chromosome involved in mutation at an arbitrary position before the operation 

                                                                                                          Mutation 

                                                                                                            Point 

Gene Genei Genei+1 

Position 10 11 12 13 14 15 16 17 
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Symbol + a b - * d e f 

 

  

Table 40. Genes from chromosome involved in mutation at an arbitrary position before the operation 

                                                                                                          Mutation 

                                                                                                            Point 

Gene Genei Genei+1 

Position 10 11 12 13 14 15 16 17 

Symbol + a b - + d e f 

  

4.7 Second Phase 

ECEEKO techniques scheme generates KGF satisfying following requirements: 

 Less power consumption. 

 Less memory usage for storing the set of genes and linking operators. 

 Provides computation complexity for security. 

ECEEKO scheme is divided into 3 parts : 

 Sink node as a root. 

 Header nodes as a intermediate nodes. 

 Sensor nodes as a leaf node in the hierarchical tree structure. 

All these nodes initially share a common key Kshare which is used to initialize the encryption and 

discard Kshare as soon as first rekeying is complete. After physical deployment each sensor nodes starts a 

timer. This ECEEKO scheme estimate the time after which a sensor node compromised and chooses a time 

bound parameter t much smaller than estimated time for rekeying purpose. In this ECEEKO hierarchical key 

generation strategy 3 types of key used for executing rekeying scheme in sink node, header nodes and sensor 

nodes respectively. 

 Sink keys used for sink node and headers. 

 Forward keys used among headers. 

 Leaf keys used in sensor nodes and their respective headers. 

All the above keys are formed using rearranging the genes with the help of linking operators. For 

generating leaf keys, header nodes arbitrarily select set of genes and rearrange the genes to generate random 

chromomes which then sends to the sensor nodes. Leaf nodes belongs to same header node use same 

sequenceof genes i.e. chromosome as a leaf key. 

 

5. RESULTS AND ANALYSIS  

In this section different experimental results and performance analysis of the ECEEKO technique 

have been done. Following is the parameters used in experiment: 

 The initial population size is 30 (i.e. number of genes).  

 the crossover rate is set at 0.8. 

 The mutation rate is set at 0.01.  

The ECEEKO approach has been compared with three existing techniques called KGF_RAND1, 

KGF_RAND2 and DDHV-D. In KGF_RAND1and KGF_RAND2 scheme 5 and 4 KGFs are randomly chosen 

respectively for its rekeying purpose. The DDHV-D scheme referred to in [3]. Simulation nvironment consist 

of 1 sink node, 10
3 
header nodes, and 10

5
 sensor nodes for constructing hierarchical wireless sensor network.  

In ECEEKO scheme the communication size can be calculated from the equation (6). 

 

                                                  

)(| |)( mkimk rMACKGFrE
ii



                                           (6)

 

 

Communication size =30*5+64=214 bits. Total cost: 214+ (30+120)/2=289 power units.  Assumes 

ECEEKO scheme needs 100 power units for rekeying.  The DDHV-D scheme Transfer A‟= 2
6
*10

5
/10

3
= 

2
6
*10

2 
bits for rekeying where 2

6
 is the key length. The power cost of DDHV-D is 2

6
*10

2
 *100/289=2215 

power units. Assume it needs only 1 power unit for rekeying. Total cost: 2215+1=2216 power unit.  

 The parameters for the simulation process listed in table 41. 
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Table 41. Parameters used in simulation 

 

Schemes 

 

KGF_RAND1 

 

 

KGF_RAND2 

 

ECEEKO DHDV-D 

Range of integers 

 
1~100 

Power consumption for each 

rekeying 

 

No constraint No constraint 30~120 
2216 

 

Num of operators 

 
4 6 7 - 

Num of operands 

 
5 7 7 - 

KGFi length 

 
4 6 7 - 

Total genes 

 
20 30 30 - 

 

Amont of power remaining for the proposed ECEEKO and some existing KGF_RAND1, 

KGF_RAND2 and DDHV-D scheme after each rekeying process is shown in figure 1. Proposed ECEEKO 

consume power in very stable manner where as KGF_RAND1, KGF_RAND2 and DDHV-D scheme 

consumes the power very quickly and become powerless after a quite a few rekeyings. 

 

 
Figure1. Power vs. Number of rekeying chart for showing amount of power remaiming after each rekeying. 

 

Power cost for each rekeying for the scmes ECEEKO, KGF_RAND1, KGF_RAND2 and DDHV-D is 

shown in figure 2. From the chart it is observe that DDHV-D schme consume maximum power for each 

rekeying among these schmes and ECEEKO consumes minimum power. 
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Figure 2. Power consumption vs number of rekeying chart for showing amount of power consume in each 

rekeying. 

Entropy values for different set of genes are shown in figure 3. From the chart it is observed that 

more number of genes causes bigger entropy value. When number of genes about 52-56 the entropy value 

converge.  

 

 
 

Figure 3. Number of genes vs entropy values 

 

6. COMPLEXITY ANALYSIS  

In this section space complexity of the ECEEKO technique has been analyzed in terms of memory 

usage. Proposed ECEEKO technique calculated the memory usage with the help of following equation (7). 

 

                                                        
qpqp **)48)*((log2 

                                                  (7)
 

 

Where, 

)*(log2 qp  is the length of series which is set as 8 bits. )*( qp  is the total number of genes i.e. 256  and 

48 means that other package overhead. So, in ECEEKO technique (8+48)*256=14.336 kilobits to store 256 

genes. In experiments of computation security, ECEEKO scheme is bounded on an attacker at most has to try 

(256! + 255!  -1) possible way.Where 256 is the number of genes and 255 is the total number of linking 
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operators for linking 256 genes. This is impractically for an attacker. In a word, ECEEKo scheme is a full 

connection scheme, but, the DDHV-D scheme is a partial connection scheme. Subsequence, ECEEKO 

memory usage is bigger than the DDHV-D scheme. However, the memory usage of ECEEKO fulfills the 

sensor nodes constraints. 

 

7. CONCLUSION  

In this paper, evolutionary computation guided energy efficient key has been proposed organization 

in wireless communication.  First phase of this scheme deals with generation of good KGF where 

evolutionary computation is used by sink node for generating several KGF‟s for rekwying purpose in the 

second phase. Second phase deals with encoding of selected genes ans transmit them to header as well as 

sensor nodes for rekeying. From the experiment our opinion is that this ECEEKO scheme has some 

advantages that are: 

 ECEEKO can be implemented in  in low power sensor nodes. 

 ECEEKO has a capability to find out KGF having low power consumption. 

 ECEEKO also supports rekeying process dynamically. 

 ECEEKO has a capability to control the power consumption in rekeying phase. 

 ECEEKO scheme is very simple, efficient and secure. 

 ECEEKO scheme has good space complexity compare to other existing schemes. 

 ECEEKO provides uniform key distribution.  

As a future scope of ECEEKO scheme, fitness function can be modified considering other 

parameters. New gene structures , better encoding of genes and different genetic operators can be consider 

for improvement of the ECEEKO scheme and thus further improve the performance of key organization 

scheme.   
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