

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

International Journal of Information & Network Security (IJINS)

Vol.2, No.1, February 2013, pp. 17~31

ISSN: 2089-3299 17

Journal homepage: http://iaesjournal.com/online/index.php/ IJINS

Evolutionary Computation Guided Energy Efficient Key

Organization in Wireless Communication (ECEEKO)

Arindam Sarkar*, J. K. Mandal*
* Department of Computer Science and Engineering, University of Kalyani, Kalyani, Nadia, Pin- 741235, W.B, India.

Article Info ABSTRACT

Article history:

Received Aug 2
th

, 2012

Revised Sept, 7
th

, 2012

Accepted Oct, 22
th

, 2012

 In this paper an Evolutionary Computation based energy efficient novel key

organization (ECEEKO) policy has been proposed by incorporating

computational safety, power management and restricted usage of memory in

wireless communication. Generating functions of secured key are generated

from the sink node through evolutionary computation and distribute to the

header and sensor nodes. On agreeable particular power consumption

constraints each potential key generating function (KGF) is encoded as a

chromosome. Using entropy measure fitness is calculated to assess key

distribution. Common keys are assembling by headers and sensor nodes.

Performance analysis of the ECEEKO approach and comparison study with

several existing methods has been done.

Keyword:

Evolutionary Computation

Wireless Communication

Key Organization

Energy Efficient

 Copyright © 2013 Insitute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Arindam Sarkar,

Department of Computer Science and Engineering,

University of Kalyani, Kalyani, Nadia, Pin- 741235, W.B, India.

Email: arindam.vb@gmail.com

1. INTRODUCTION

Hierarchical sensor networks (HSN) [4] is a category of a wireless sensor networks (WSN) [2, 5, 10,

18] comprises of sensor nodes, header and sink nodes. Another category of WSN is distributed sensor

networks (DSN) which is consist of sensor nodes and sink node. In HSN header and sink node are differ in

terms of energy, memory and computational capability. In sensor nodes encryption algorithms are infeasible

because sensor nodes are limited by computing capability, memory size and battery life. So, sensor nodes

cannot handle complex exponentiation for encryption using limited battery life. Security of WSN is essential

when sensor nodes are deployed in hostile and malicious environment. But quite a few security schemes

mainly suffer from optimal usage of memory space and energy. Proposed scheme handles this problem by

optimizing memory usage and power consumption using evolutionary computation.

2. PROBLEM STATEMENT

Several security schemes have been proposed for pre distribution of key [6, 7, 8, 12, 13, 15, 21],

group key distribution [11], integrated hierarchical key deployment [9] and key renewal [6, 14, 16] in sensor

networks. But this security schemes suffers from efficient power and memory usage. To resolve this problem

a novel and efficient technique has been proposed in this paper which optimizes the power and memory

usage and provides good computational security using evolutionary computation.

3. RELATED WORK

A number of security algorithms were proposed for providing security in sensor network. Blom‟s

proposed key pre-distribution method with key size k and network size N which takes k*N memory space to

reach full connection that is quite large [21]. To reduce memory usage in Blom‟s scheme a new scheme has

been proposed by DU et al. known as DDHV-D [3]. In this scheme the neighboring nodes are checked for

storing key. A node did not waste its memory by storing key of a node which is not its neighbor. This scheme

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 17 – 31

18

also uses deployment knowledge of reducing memory usage at the time pre distribution of key for

constructing neighboring connection. Another scheme proposed by Chien-Lung Wang et al. [1] has also

some shortcomings like if there are m number of genes in a gene pool then total number of possible

chromosomes (KGF) is only m!, so total m! number of keys are possible from m! chromosomes and f

(f<<m!) keys are selected for evaluation. Also this technique does not support mutation within a gene. Rui

Zhou et al. [23] proposed a novel key management scheme, which utilizes Elliptic Curve Cryptography and

the t-degree trivariate symmetric polynomial in the design of an efficient key management scheme for sensor

nodes. Chen Chen et al. [24] have proposed a scheme which follows the architecture of the three layers in

LOCK.

In this paper, evolutionary computation guided optimized power and efficient memory usage key

organization scheme in a hierarchical sensor network has been proposed. In this method using evolutionary

computation strategy key generating functions (KGF‟s) i.e. chromosomes are generated by sink nodes for

rekeying on sensor nodes under energy consumption constraints. The functions are further divided into genes

which are then embedded into sensor nodes and headers before deployment. As sensor nodes are deployed,

the headers will randomly assemble the common genes and send the series to sensors for rebuilding the

KGFs (chromosomes) for rekeying. The rekeying functions are rebuilt in each predefined interval, such that

it would be difficult for an attacker to crack the functions in time. Besides, it is also energy-efficient in that it

consumes the energy for rekeying only while assembling a new key in a sensor node. The proposed

evolutionary computation rekeying scheme can thus not only meet the constraints of low energy and little

memory but also fulfill the security requirement.

4. PROPOSED ECEEKO SCHEME

In ECEEKO technique shortcomings of the existing methods has been resolved by introducing

following features:

a) In ECEEKO technique each gene is made of operands and operators. For example gene G1= + p q.

i.e. (p + q). Collection of such type of genes constructs a gene pool. For example

Gene pool1= {G0, G1, G2,...., Gm}. Where gene G0 consist of linking operators like +, -,* etc for

concatenating at most m number of genes satisfying power consumption constraints. Initially this

scheme consider a set of gene pools like {Gene pool1, Gene pool2, ... , Gene poolp}. If a gene pool

has m number of genes and n number of linking operators then this gene pool can produce

(m! + n! -1) number of different chromosomes by linking each gene with other in different

combination using linking operators. From this (m! + n! -1) number of different chromosomes only f

(f << (m!+n!-1)) chromosomes are selected for evaluation because evaluation of distribution of this

(m!+n!-1) chromosomes are impossible. Entropy measurement which is basically a fitness function

is used for selecting best chromosome among other chromosomes in a particular gene pool. This

best fitted chromosome is known as KGF and value produce from this KGF is considered as a key.

In this way using evolutionatry computation from p number of different gene pools at most p

number of best fitted KGF can be constructed. Again from this p number of KGF‟s best KGF having

maximum entropy value is selected. Now genes belongs to the best fitted KGF‟s are transmitted to

the header nodes. Header nodes can use different combination of these genes for producing different

key value. Sensor nodes belonging to a common header node use same gene combination for

producing a common key value which is used by all sensor nodes under this header node.

b) In chromosome construction strategy one new gene G0 consisting of rules for concatenating genes

has been introduced.

c) Concept of context has also been introduced in ECEEKO. Where contexts are formed by collecting

genes having same type of input and returning same type of arguments. If genes G1 and G2 have

operators that take real arguments and return Boolean values then these two genes will belongs to

same context. Similarly, genes having operators which takes Boolean arguments and returning

Boolean values are also belongs to same context.

d) In ECEEKO if there are m number of genes and n numbers of conacatinating operators then total

possible chromosomes i.e. KGF‟s (different gene combination) will be (m! + n! - 1). Whereas

Chien-Lung Wang et al. proposed method can generate only m! where m is the number of code

slices(genes).

e) Crossover of muligenic chromosome with different contexts has been proposed in ECEEKO.

IJINS ISSN: 2089-3299

Evolutionary Computation Guided Energy Efficient Key Organization in Wireless Com (Arindam Sarkar)

19

f) Mutation within a gene as well as within a chromosome has also incorporated in the proposed

method. If mutation point falls within a gene then at the mutation point the exchanged symbols must

come from the same context of operands and operators.

In this hierarchical sensor network model a hierarchical tree structure is maintained where sink node

is placed at the root. Header nodes are become intermediate place holder of the tree and all the sensors

nodes are placed at the leaf level.

 Sink node (Root node) - It acts as a base station and provides the access to the outside for the WSN.

KGF‟s are generated from the sink for generating keys in the rekeying strategy. Sink node initially

starts with number of genes, and then find out the good combination of genes (chromosome) using

evolutionary computation. Set of binary operators and operands are use to form a gene. Several

genes are concatenated in several combinations using predefine binary operators to form a KGF

(chromosome). This sink node sends m genes belong to the best chromosome (KGF) to the header

nodes before deployment. It is assumed that the sink nodes are secure and powerful. It means that

the sink node is located in a secure place and has limitless computational capability, power,

memory, and communication bandwidth.

 Header node (Intermediate node) – It has larger memory size, more amounts of energy and more

powerful computational capability than sensor nodes. It delivered the aggregated results to sink node

after combining the monitored data from the sensor nodes. The function of header nodes to

recognize which set of sensor nodes belongs to their area and select common set of genes

combination (chromosome) for the sensor nodes belonging to a particular header node and transfer

them to the sensor nodes.

 Sensor nodes (Leaf node) - It has small amount of power and its functionality is to monitoring the

environment and sends the gathered information to the header nodes. Each sensor node generates

new key using several possible gene combination. The functions of sensor nodes include the

execution of simple operations, like bitwise operations, fundamental arithmetic operations, and shift

operations, and generate keys according to the instructions from headers. Initially it is assume that

before the first rekeying a sensor node is completely secure. It means in within a certain t time, an

adversary can not compromise any sensor node. An adversary may, however, compromise any

sensor node after the t time. The sensor nodes and their headers thus have to finish the first rekeying

process within t time.

In ECEEKO scheme each gene comprises of one binary operator and two operands. Different genes

are concatenated using different operators and forms different chromosomes. Different chromosomes have

different key distributions and energy consumptions. In this scheme evolutionary computation is used to find

out good set of KGF having a key distribution as uniform as possible under low energy consumption.

Distribution of key value is observed by proposed entropy calculation.

Proposed ECEEKO scheme has 2 phases. These are

 Construction of good KGF: In this phase an initial population is created using c numbers of

chromosomes each having m numbers of genes. These m genes are concatenated with each other in

different possible combination with the help of predefined set of binary operators to form pool of

chromosomes. This pool comprises of all the combination of predefined operators and genes.

Depend on power consumption constraints appropriate chromosomes get selected for construction

of mating pool. Different evolutionary operators like crossover and mutation are applied on best

parent chromosomes to form new child chromosomes. In this way good offspring gets created and

used as KGF.

 Rekeying: In this phase best chromosomes generated from previous phase delivered to the headers

and sensors for rekeying.

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 17 – 31

20

4.1 Chromosome Construction

Each set of genes is encoded as a chromosome. Several encoding techniques have already been

proposed earlier [17, 20]. Genes are the predefined set of binary operators and operands generated by the sink

nodes for constructing KGFs. In a simple scenario, to obtain the chromosome, sub-expressions encoded by

the genes may be simply aggregated by a linking function. A more advanced version uses an extra special

gene made up of operators used to link the other genes. The gene G0 from table 1 is the linking gene and the

whole chromosome encodes the expression (p * q) + (r / s) - (t + u).

Table 1. Expression encoded by multigenic chromosome

Gene G0 G1 G2 G3

Symbols + - * p q / r s + t u

These extra genes may also take part in the evolutionary process and evolve on the same rules as the

other genes. Gene pool is formed from all combinations of operators and operands. From that pool some

arbitrary genes are selected to construct a chromosome. Using different combinations of genes different

chromosomes can be constructed. With 3 different genes and 2 different binary operator (3! + 2! -1) = 7

possible combinations (chromosome) can be generated. In general if there are m number of genes and n

number of concatenating operators then (m! + n! -1) possible combination (Chromosome) can be generated.

A more general scenario is obtained when the encoded expressions are made up of operands and operators of

different types. The operators of each gene type are homogenous, meaning they all take arguments of the

same type as inputs and they all return the argument of same type. The operators of each gene type are of the

same type as the arguments the operators take. They may be simple symbols of required types or references

to other genes where the aggregation operator also returns a compatible type. In the operand set there is also

found the set of gene references that point to genes where operators return the compatible type. The

multigenic chromosome in table 2 shows an expression containing:

 Context C1- In linking gene G0, operators that take Boolean arguments and return Boolean values

 Context C2- in genes G1, G2 and G3 – operators that take real arguments and return Boolean values

 Context C3- in genes G4, G5, G6 – operators that take real arguments and return real values

Table 2. Multigenic chromosome (a<G3)||(G4>G5)&&(b>c) with linking gene G0

G0 G1 G2 G3 G4 G5 G6

|| && G1 G2 G3 < a G6 > G4 G5 > b c + d f - g h * i j

The encoded expression is: (a<G3)||(G4>G5)&&(b>c) which further is expanded by dereferencing

into (a<(i*j)) || ((d+f)>(g-h)) && (b>c) which is valid regarding the compatibility of types. Judging by the

above three contexts are identified.

 The context C1 of operators taking Boolean arguments and returning Boolean values;

Operators={ ||, && } Operands ={ G1, G2, G3}

 The context C2 of operators taking real arguments and returning Boolean values;

Operators = { <,>}, Operands = {a, b, c, d, f, g, h, i, j, G4, G5, G6}

 The context C3 of operators taking real arguments and returning real values;

Operators = { +, -} Operands={ a, b, c, d, e, f, g}

This approach permits a linear representation of complex expressions.

4.2 Power Consumption

If average power consumption of each rekeying is 100 units and if rekeying number is expected as

100 times then 10000 units will be total power for rekeying in a sensor node. Each operator takes certain unit

for execution.

 Operator „+‟ and „-‟ will take one unit because its execution takes one time unit.

 Operator „*‟ can be think of collection of several „+‟ operators. So power consumption for single „*‟

is equal to number of „+‟ operation to be performed.

 Operator „/‟ can be thinkof collection of several „-‟ operators. So power consumption for single „-‟ is

equal to number of „-‟operation to be performed.

IJINS ISSN: 2089-3299

Evolutionary Computation Guided Energy Efficient Key Organization in Wireless Com (Arindam Sarkar)

21

But „*‟ and „/‟ and at least takes one time unit as an execution time so, consume at least one unit. Now

„*‟ and „/‟ belongs to same priority level and has the highest priority among all operators. Operator „+‟ and

„-‟ has the 2
nd

 highest priority and both belongs to the same priority class. Logic operators have the lowest

priority.

Each sensor node has equal amount of limited power primarily. This rekeying operation must be less

power consuming in order to perform other jobs in sensor node with rest of the power. But a less power

consuming rekeying operation produce a simple KGF which will easily be cracked. Thus, an appropriate

KGF should be constructed by using following power consumption constraints given in equation 1.

UiL PowerConChromosomePowerConPowerCon)((1)

gpPowerConL *1 (2)

tolerencegpPowerConU *2 (3)

where,

1P = average allowed minimum power consumption value of an operator for constructing not too simple

chromosome.

2P = average allowed maximum power consumption value of an operator for constructing not too power

consuming complex chromosome.

g = no. of genes.

Let)(iChromosomePowerCon = (1 * 4) + (6 / 2) - (5 + 7)

Let 1P and 2P set as 4, number of g is 3 and tolerance is 6 then

)63*4()()3*4(iChromosomePowerCon

Power consumption of each gene depends on its operator. A single chromosome can be made of

several genes. Different combination of gene can made several versions of chromosomes with different

power consumption (takes different execution time). So those chromosomes violated power consumption

constrained are ruled out.

4.3 Initial Population

In this phase after with an optimal power consumption constraints, chromosomes are arbitrarily

generated using chromosome construction rules for creating chromosome pool.

4.4 Fitness Calculation

Fitness function is essential for producing quality solution. Using fitness function best parents set of

genes (chromosome) are selected from pool of genes to produce good set of genes (chromosome). Proposed

ECEEKO technique entropy function [2, 22] is used for fitness calculation of a chromosome. m number of

genes and n number of linking operators may be produced at most (m!+n!-1) chromosomes but evaluation of

distribution of this much of keys are impossible. Only f (f << (m!+n!-1)) keys are selected for evaluation.

The set of f randomly selected keys are {k1, k2,…, kf}with probabilities (p1, p2,…, pf,).

fipp i

f

i

i ,...,2,1,0

1

,

 (4)

i

f

i

ii
p

pPoolGeneEntropy
1

log)_(2

1

 (5)

Using equation (5) entrophy of a gene pool is calculated which is the fitness measure for that

particular gene pool.For more uniform and unbiased key distribution maximum fitness value is required.

For example, consider genes G1 =* 1 4, G2 = / 6 2, G3 = + 5 7 and G4 = - 9 2 with 3 linking binary operators

+, -, *. Using these 4 genes and 3 linking operator‟s total (4! + 3! -1) =29 possible valid chromosomes can be

constructed in the following way.

 4 genes G1, G2, G3, G4 can be linked 3! = 6 ways applying different combinations of 3 linking

operators maintaining the gene order (G1, G2, G3, G4). So if there are m different linking operators

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 17 – 31

22

then m! different chromosomes may be produced in this way. Table 3 shows 6 different such

chromosomes.

Table 3. Shows 6 different chromosomes having same gene order.

(G1+G2-G3*G4) (G1+G2*G3-G4) (G1-G2+G3*G4) (G1-G2*G3+G4) (G1*G2+G3-G4) (G1*G2-G3+G4)

 Using same linking operators +, -, * these 4 genes G1, G2, G3, G4 can be linked with each other in

4!=24 different ways applying same order of linking operators but different gene order shown in

table 4. If there are n different genes then n! different chrosomes can be constructed.

Table 4. Twentyfour different chromosomes having same order of linking operators

but different order of genes.

(G1+G2-G3*G4) (G2+G1-G3*G4) (G3+G2-G1*G4), (G4+G1-G2*G3),

(G1+G2 - G4*G3) (G2+G1-G4*G3) (G3+G2-G4*G1) (G4+G1-G3*G2),

(G1+G3 -G2 *G4) (G2+G3-G1*G4) (G3+G1-G2*G4), (G4+G2-G1*G3),

(G1+ G3 -G4*G2) (G2+G3-G4*G1) (G3+G1-G4*G2), (G4+G2-G3*G1),
(G1+ G4-G2*G3) (G2+G4-G1*G3) (G3+G4-G1*G2), (G4+G3-G1*G2),

(G1+ G4-G3*G2) (G2+G4-G3*G1) (G3+G4-G2*G1), (G4+G3-G3*G1).

From the avove two processes, it is observed that if there are m number of genes and n numbers of

linking operators then total possible chromosomes (different gene combination) will be (m! + n!)-1.

Deduction of 1 because presence of 1 common gene in both the process i.e. (G1+G2-G3*G4) in the above

example. For each combination of genes and operators in particular gene pool entropy value is calculated.

Example of entropy calculation is shown in the following.

 Chromosome 1: If linking gene G0 = + - * G1 G2 G3 G4 then chromosome key value will be

 = (1*4) + (6 / 2) - (5 + 7) * (9-2) = 4+3-12*7 = -77 (as shown in table 5.)

 Table 5. Chromosome with linking gene G0 = + - * G1 G2 G3 G4

G0 G1 G2 G3 G4

+ - * G1 G2 G3 G4 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 2: If linking gene G0 = + * - G1 G2 G3 G4 then chromosome key value will be

= (1 * 4) + (6 / 2) * (5 + 7) - (9-2) = 4+3*12-7 = 33 (as shown in table 6.)

Table 6. Chromosome with linking gene G0 = + * - G1 G2 G3 G4
G0 G1 G2 G3 G4

+ * - G1 G2 G3 G4 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 3: If linking gene G0 = * + - G1 G2 G3 G4 then chromosome key value will be

 = (1 * 4) * (6 / 2) + (5 + 7) - (9-2) = 4*3+12-7 = 17(as shown in table 7.)

Table 7. Chromosome with linking gene G0 = * + - G1 G2 G3 G4
G0 G1 G2 G3 G4

* + - G1 G2 G3 G4 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 4: If linking gene G0 = * - + G1 G2 G3 G4 then chromosome key value will be

 = (1 * 4) * (6 / 2) - (5 + 7) + (9-2) = 4*3-12+7 = 7 (as shown in table 8.)

Table 8. Chromosome with linking gene G0 = * - + G1 G2 G3 G4

G0 G1 G2 G3 G4

 * - + G1 G2 G3 G4 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 5: If linking gene G0 = - + * G1 G2 G3 G4 then chromosome key value will be

 = (1 * 4) - (6 / 2) + (5 + 7) * (9-2) = 4-3+12*7 = 85 (as shown in table 9.)

Table 9. Chromosome with linking gene G0 = - + * G1 G2 G3 G4

IJINS ISSN: 2089-3299

Evolutionary Computation Guided Energy Efficient Key Organization in Wireless Com (Arindam Sarkar)

23

G0 G1 G2 G3 G4

- + * G1 G2 G3 G4 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 6: If linking gene for G0 = - * + G1 G2 G3 G4 then chromosome key value will be

 = (1 * 4) - (6 / 2) * (5 + 7) + (9-2) = 4-3*12+7 = -25 (as shown in table 10.)

Table 10. Chromosome with linking gene G0 = - * + G1 G2 G3 G4
G0 G1 G2 G3 G4

 - * + G1 G2 G3 G4 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 7: If linking gene for G0 = + - * G1 G2 G4 G3 then chromosome key value will be

 = (1 * 4) + (6 / 2) - (9 - 2) * (5 + 7) = 4+3-7*12 = 12 (as shown in table 11.)

Table 11. Chromosome with linking gene G0 = + - * G1 G2 G4 G3
G0 G1 G2 G3 G4

 + - * G1 G2 G4 G3 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 8: If linking gene for G0 = + - * G1 G3 G2 G4 then chromosome key value will be

 = (1 * 4) + (5 + 7) - (6 / 2) * (9 - 2) = 4+12-3*7 = -5 (as shown in table 12.)

Table 12. Chromosome with linking gene G0 = + - * G1 G3 G2 G4
G0 G1 G2 G3 G4

 + - * G1 G3 G2 G4 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 9: If linking gene for G0 = + - * G1 G3 G4 G2 then chromosome key value will be

 = (1 * 4) + (5 + 7) - (9 - 2) * (6 / 2)= 4+12-7*3 = -5 (as shown in table 13.)

Table 13. Chromosome with linking gene G0 = + - * G1 G3 G4 G2
G0 G1 G2 G3 G4

 + - * G1 G3 G4 G2 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 10: If linking gene for G0 = + - * G1 G4 G2 G3 then chromosome key value will be

 = (1 * 4) + (9 - 2) – (6 / 2) * (5 + 7) = 4+7-3*12 = -25 (as shown in table 14.)

Table 14. Chromosome with linking gene G0 = + - * G1 G4 G2 G3
G0 G1 G2 G3 G4

 + - * G1 G4 G2 G3 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 11: If linking gene for G0 = + - * G1 G4 G3 G2 then chromosome key value will be

 = (1 * 4) + (9-2) - (5 + 7) * (6 / 2) = 4+7-12*3= -25 (as shown in table 15.)

Table 15. Chromosome with linking gene G0 = + - * G1 G4 G3 G2
G0 G1 G2 G3 G4

 + - * G1 G4 G3 G2 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 12: If linking gene for G0 = + - * G2 G1 G3 G4 then chromosome key value will be

 = (6 / 2) + (1 * 4) - (5 + 7) * (9 - 2) = 3+4-12*7 = -77 (as shown in table 16.)

Table 16. Chromosome with linking gene G0 = + - * G2 G1 G3 G4
G0 G1 G2 G3 G4

 + - * G2 G1 G3 G4 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 13: If linking gene for G0 = + - * G2 G1 G4 G3 then chromosome key value will be

 = (6 / 2) + (1 * 4) - (9 - 2) * (5 + 7) = 3+4-7*12 = -77 (as shown in table 17.)

Table 17. Chromosome with linking gene G0 = + - * G2 G1 G4 G3
G0 G1 G2 G3 G4

 + - * G2 G1 G4 G3 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 14: If linking gene for G0 = + - * G2 G3 G1 G4 then chromosome key value will be

 = (6 / 2) + (5 + 7) - (1 * 4) * (9 - 2) = 3+12-4*7 = -13 (as shown in table 18.)

Table 18. Chromosome with linking gene G0 = + - * G2 G3 G1 G4

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 17 – 31

24

G0 G1 G2 G3 G4

 + - * G2 G3 G1 G4 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 15: If linking gene for G0 = + - * G2 G3 G4 G1 then chromosome key value will be

 = (6 / 2) + (5 + 7) - (9 - 2) * (1 * 4) = 3+12-7*4 = -13 (as shown in table 19.)

Table 19. Chromosome with linking gene G0 = + - * G2 G3 G4 G1
G0 G1 G2 G3 G4

 + - * G2 G3 G4 G1 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 16: If linking gene for G0 = + - * G2 G4 G1 G3 then chromosome key value will be

 = (6 / 2) + (9 - 2) – (1 * 4) * (5 + 7) = 3+7-4*12 = -38 (as shown in table 20.)

Table 20. Chromosome with linking gene G0 = + - * G2 G4 G1 G3
G0 G1 G2 G3 G4

 + - * G2 G4 G1 G3 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 17: If linking gene for G0 = + - * G2 G4 G3 G1 then chromosome key value will be

 = (6 / 2) + (9 - 2) – (5 + 7) * (1 * 4) = 3+7-12*4 = -38 (as shown in table 21.)

Table 21. Chromosome with linking gene G0 = + - * G2 G4 G3 G1
G0 G1 G2 G3 G4

 + - * G2 G4 G3 G1 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 18: If linking gene for G0 = + - * G3 G2 G1 G4 then chromosome key value will be

 = (5 + 7) + (6 / 2) - (1 * 4) * (9 - 2) = 12+3-4*7 = -13 (as shown in table 22.)

Table 22. Chromosome with linking gene G0 = + - * G3 G2 G1 G4
G0 G1 G2 G3 G4

 + - * G3 G2 G1 G4 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 19: If linking gene for G0 = + - * G3 G2 G4 G1 then chromosome key value will be

 = (5 + 7) + (6 / 2) - (9 - 2) * (1 * 4) = 12+3-7*4 = -13 (as shown in table 23.)

Table 23. Chromosome with linking gene G0 = + - * G3 G2 G4 G1
G0 G1 G2 G3 G4

 + - * G3 G2 G4 G1 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 20: If linking gene for G0 = + - * G3 G1 G2 G4 then chromosome key value will be

 = (5 + 7) + (1 * 4) – (6 / 2) * (9 - 2) = 12+4-3*7= -5 (as shown in table 24.)

Table 24. Chromosome with linking gene G0 = + - * G1 G2 G3 G4
G0 G1 G2 G3 G4

 + - * G1 G2 G3 G4 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 21: If linking gene for G0 = + - * G3 G1 G4 G2 then chromosome key value will be

 = (5 + 7) + (1 * 4) – (9 - 2) * (6 / 2) = 12+4-7*3= -5 (as shown in table 25.)

Table 25. Chromosome with linking gene G0 = + - * G3 G1 G4 G2
G0 G1 G2 G3 G4

 + - * G3 G1 G4 G2 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 22: If linking gene for G0 = + - * G3 G4 G1 G2 then chromosome key value will be

 = (5 + 7) + (9 - 2) – (1 * 4) * (6 / 2) = 12+7-4*3=7 (as shown in table 26.)

Table 26. Chromosome with linking gene G0 = + - * G3 G4 G1 G2
G0 G1 G2 G3 G4

 + - * G3 G4 G1 G2 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 23: If linking gene for G0 = + - * G3 G4 G2 G1 then chromosome key value will be

 = (5 + 7) + (9 - 2) – (6 / 2) * (1 * 4) = 12+7-3*4=7 (as shown in table 27.)

IJINS ISSN: 2089-3299

Evolutionary Computation Guided Energy Efficient Key Organization in Wireless Com (Arindam Sarkar)

25

Table 27. Chromosome with linking gene G0 = + - * G3 G4 G2 G1
G0 G1 G2 G3 G4

 + - * G3 G4 G2 G1 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 24: If linking gene for G0 = + - * G4 G1 G2 G3 then chromosome key value will be

 = (9 - 2) + (1 * 4) – (6 / 2) * (5 + 7) = 7+4-3*12= -25 (as shown in table 28.)

Table 28. Chromosome with linking gene G0 = + - * G4 G1 G2 G3
G0 G1 G2 G3 G4

 + - * G4 G1 G2 G3 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 25: If linking gene for G0 = + - * G4 G1 G3 G2 then chromosome key value will be

 = (9 - 2) + (1 * 4) – (5 + 7) * (6 / 2)= 7+4-12 * 3= -25 (as shown in table 29.)

Table 29. Chromosome with linking gene G0 = + - * G4 G1 G3 G2
G0 G1 G2 G3 G4

 + - * G4 G1 G3 G2 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 26: If linking gene for G0 = + - * G4 G2 G1 G3 then chromosome key value will be

 = (9 - 2) + (6 / 2) – (1 * 4) * (5 + 7) = 7+3-4*12 =-38 (as shown in table 30.)

Table 30. Chromosome with linking gene G0 = + - * G4 G2 G1 G3
G0 G1 G2 G3 G4

 + - * G4 G2 G1 G3 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 27: If linking gene for G0 = + - * G4 G2 G3 G1 then chromosome key value will be

 = (9 - 2) + (6 / 2) – (5 + 7) * (1 * 4) = 7+3-12*4 =-38 (as shown in table 31.)

Table 31. Chromosome with linking gene G0 = + - * G4 G2 G3 G1
G0 G1 G2 G3 G4

 + - * G4 G2 G3 G1 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 28: If linking gene for G0 = + - * G4 G3 G1 G2 then chromosome key value will be

 = (9 - 2) + (5 + 7) – (1 * 4) * (6 / 2) = 7+12-4*3 = 7 (as shown in table 32.)

Table 32. Chromosome with linking gene G0 = + - * G4 G3 G1 G2
G0 G1 G2 G3 G4

 + - * G4 G3 G1 G2 * 1 4 / 6 2 + 5 7 - 9 2

 Chromosome 29: If linking gene for G0 = + - * G4 G3 G2 G1 then chromosome key value will be

 = (9 - 2) + (5 + 7) – (6 / 2) * (1 * 4) = 7+12-3*4 = 7 (as shown in table 33.)

Table 33. Chromosome with linking gene G0 = + - * G4 G3 G2 G1
G0 G1 G2 G3 G4

 + - * G4 G3 G2 G1 * 1 4 / 6 2 + 5 7 - 9 2

After evaluation of these 29 different chromosomes 29 different values -77, 33, 17, 7, 85, -25, 12, -

5, -5, -25, -25, -77, -77, -13, -13, -38, -38, -13, -13, -5, -5, 7, 7, -25, -25, -38, -38, 7, 7, get produced. Though

these values are generated from same set of genes and operators but their different combinations, they are

togatherly formed key set i.e. KEY = {-77, 33, 17, 7, 85, -25, 12, -5, -25, -13, -38, }. Now using equation (4)

probabilities of selecting each key is calculated i.e. p = {1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11, 1/11,

1/11, 1/11} and from the equation (5) entropy of this gene pool is calculated

i

f

i

ii
p

pPoolGeneEntropy
1

log)_(2

1

 In this way entropy of each gene pool is calculated. After that gene pool having maximum entropy

value is selected as a KGF for a particular session. Now genes belonging to this best KGF get transmitted to

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 17 – 31

26

the header nodes. Different header nodes can use different combination of these gene values for producing

different key values.

4.5 Crossover Operation

The simple one point crossover proposed in [19, 20]. A chromosome is consisting of several genes

and each gene belongs to a particular context (discussed in section 4.1). Table 34 shows a single chromosome

with multiple contexts.

Table 34. Multigenic chromosome with multiple gene contexts
Context C1 C2 C2 C2 C3 C3 C3

Gene G0 G1 G2 G3 G4 G5 G6

Now, table 35 shows two multigenic chromosomes have shown made up of genes corresponding to the

contexts where ci denotes a gene of context i, crossover at gene 2 leads to the new chromosomes shown in

table 36, which are chromosomes of the same gene structure.

Table 35. Multigenic chromosomes before crossover

 Crossover Point
C1

’ C2
’ C2

’ C2
’ C3

’ C3
’ C3

’

C1
’’ C2

’’ C2
’’ C2

’’ C3
’’ C3

’’ C3
’’

Table 36. Multigenic chromosomes after crossover

 Crossover Point

C1
’ C2

’ C2
’’ C2

’’ C3
’’ C3

’’ C3
’’

C1
’’ C2

’’ C2
’ C2

’ C3
’ C3

’ C3
’

In random position crossover when a crossover points falls inside a gene then given the genes Gi

and Gi+1 of the same context C3, as shown in table 37 crossover at position 14 leads to the situation presented

in table 38, which further conserves the validity of the chromosome.

Table 37 . Genes from a chromosomes involved in crossover at arbitrary position before the operation

 Crossover

 Point

Gene Genei Genei+1

Position 10 11 12 13 14 15 16 17

Symbol + a b - * d e f

Gene Genei Genei+1

Position 10 11 12 13 14 15 16 17

Symbol / m n * + p q r

Table 38. Genes from chromosomes involved in crossover at an arbitrary position after the operation

 Crossover

 Point

Gene Genei Genei+1

Position 10 11 12 13 14 15 16 17

Symbol + a b - + p q r

Gene Genei Genei+1

Position 10 11 12 13 14 15 16 17

Symbol / m n * * d e f

4.6 Mutation Operation

Single point mutation operation takes place in a context of a gene. At the mutation point the

exchanged symbols must come from the corresponding sets of operands and operators. Consider the gene

from table 39 where mutation point at 14 change the symbol and the new symbol comes from same context

of the operator or operand set. In this example the symbol at positon 14 i.e “*” change to “+” which is

belongs to the same context.

Table 39. Genes from chromosome involved in mutation at an arbitrary position before the operation

 Mutation

 Point

Gene Genei Genei+1

Position 10 11 12 13 14 15 16 17

IJINS ISSN: 2089-3299

Evolutionary Computation Guided Energy Efficient Key Organization in Wireless Com (Arindam Sarkar)

27

Symbol + a b - * d e f

Table 40. Genes from chromosome involved in mutation at an arbitrary position before the operation

 Mutation

 Point

Gene Genei Genei+1

Position 10 11 12 13 14 15 16 17

Symbol + a b - + d e f

4.7 Second Phase

ECEEKO techniques scheme generates KGF satisfying following requirements:

 Less power consumption.

 Less memory usage for storing the set of genes and linking operators.

 Provides computation complexity for security.

ECEEKO scheme is divided into 3 parts :

 Sink node as a root.

 Header nodes as a intermediate nodes.

 Sensor nodes as a leaf node in the hierarchical tree structure.

All these nodes initially share a common key Kshare which is used to initialize the encryption and

discard Kshare as soon as first rekeying is complete. After physical deployment each sensor nodes starts a

timer. This ECEEKO scheme estimate the time after which a sensor node compromised and chooses a time

bound parameter t much smaller than estimated time for rekeying purpose. In this ECEEKO hierarchical key

generation strategy 3 types of key used for executing rekeying scheme in sink node, header nodes and sensor

nodes respectively.

 Sink keys used for sink node and headers.

 Forward keys used among headers.

 Leaf keys used in sensor nodes and their respective headers.

All the above keys are formed using rearranging the genes with the help of linking operators. For

generating leaf keys, header nodes arbitrarily select set of genes and rearrange the genes to generate random

chromomes which then sends to the sensor nodes. Leaf nodes belongs to same header node use same

sequenceof genes i.e. chromosome as a leaf key.

5. RESULTS AND ANALYSIS

In this section different experimental results and performance analysis of the ECEEKO technique

have been done. Following is the parameters used in experiment:

 The initial population size is 30 (i.e. number of genes).

 the crossover rate is set at 0.8.

 The mutation rate is set at 0.01.

The ECEEKO approach has been compared with three existing techniques called KGF_RAND1,

KGF_RAND2 and DDHV-D. In KGF_RAND1and KGF_RAND2 scheme 5 and 4 KGFs are randomly chosen

respectively for its rekeying purpose. The DDHV-D scheme referred to in [3]. Simulation nvironment consist

of 1 sink node, 10
3
header nodes, and 10

5
 sensor nodes for constructing hierarchical wireless sensor network.

In ECEEKO scheme the communication size can be calculated from the equation (6).

)(| |)(mkimk rMACKGFrE
ii

 (6)

Communication size =30*5+64=214 bits. Total cost: 214+ (30+120)/2=289 power units. Assumes

ECEEKO scheme needs 100 power units for rekeying. The DDHV-D scheme Transfer A‟= 2
6
*10

5
/10

3
=

2
6
*10

2
bits for rekeying where 2

6
 is the key length. The power cost of DDHV-D is 2

6
*10

2
 *100/289=2215

power units. Assume it needs only 1 power unit for rekeying. Total cost: 2215+1=2216 power unit.

 The parameters for the simulation process listed in table 41.

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 17 – 31

28

Table 41. Parameters used in simulation

Schemes

KGF_RAND1

KGF_RAND2

ECEEKO DHDV-D

Range of integers

1~100

Power consumption for each

rekeying

No constraint No constraint 30~120
2216

Num of operators

4 6 7 -

Num of operands

5 7 7 -

KGFi length

4 6 7 -

Total genes

20 30 30 -

Amont of power remaining for the proposed ECEEKO and some existing KGF_RAND1,

KGF_RAND2 and DDHV-D scheme after each rekeying process is shown in figure 1. Proposed ECEEKO

consume power in very stable manner where as KGF_RAND1, KGF_RAND2 and DDHV-D scheme

consumes the power very quickly and become powerless after a quite a few rekeyings.

Figure1. Power vs. Number of rekeying chart for showing amount of power remaiming after each rekeying.

Power cost for each rekeying for the scmes ECEEKO, KGF_RAND1, KGF_RAND2 and DDHV-D is

shown in figure 2. From the chart it is observe that DDHV-D schme consume maximum power for each

rekeying among these schmes and ECEEKO consumes minimum power.

IJINS ISSN: 2089-3299

Evolutionary Computation Guided Energy Efficient Key Organization in Wireless Com (Arindam Sarkar)

29

Figure 2. Power consumption vs number of rekeying chart for showing amount of power consume in each

rekeying.

Entropy values for different set of genes are shown in figure 3. From the chart it is observed that

more number of genes causes bigger entropy value. When number of genes about 52-56 the entropy value

converge.

Figure 3. Number of genes vs entropy values

6. COMPLEXITY ANALYSIS

In this section space complexity of the ECEEKO technique has been analyzed in terms of memory

usage. Proposed ECEEKO technique calculated the memory usage with the help of following equation (7).

qpqp **)48)*((log2

 (7)

Where,

)*(log2 qp is the length of series which is set as 8 bits.)*(qp is the total number of genes i.e. 256 and

48 means that other package overhead. So, in ECEEKO technique (8+48)*256=14.336 kilobits to store 256

genes. In experiments of computation security, ECEEKO scheme is bounded on an attacker at most has to try

(256! + 255! -1) possible way.Where 256 is the number of genes and 255 is the total number of linking

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 17 – 31

30

operators for linking 256 genes. This is impractically for an attacker. In a word, ECEEKo scheme is a full

connection scheme, but, the DDHV-D scheme is a partial connection scheme. Subsequence, ECEEKO

memory usage is bigger than the DDHV-D scheme. However, the memory usage of ECEEKO fulfills the

sensor nodes constraints.

7. CONCLUSION

In this paper, evolutionary computation guided energy efficient key has been proposed organization

in wireless communication. First phase of this scheme deals with generation of good KGF where

evolutionary computation is used by sink node for generating several KGF‟s for rekwying purpose in the

second phase. Second phase deals with encoding of selected genes ans transmit them to header as well as

sensor nodes for rekeying. From the experiment our opinion is that this ECEEKO scheme has some

advantages that are:

 ECEEKO can be implemented in in low power sensor nodes.

 ECEEKO has a capability to find out KGF having low power consumption.

 ECEEKO also supports rekeying process dynamically.

 ECEEKO has a capability to control the power consumption in rekeying phase.

 ECEEKO scheme is very simple, efficient and secure.

 ECEEKO scheme has good space complexity compare to other existing schemes.

 ECEEKO provides uniform key distribution.

As a future scope of ECEEKO scheme, fitness function can be modified considering other

parameters. New gene structures , better encoding of genes and different genetic operators can be consider

for improvement of the ECEEKO scheme and thus further improve the performance of key organization

scheme.

ACKNOWLEDGEMENTS

The author expressesed deep sense of gratitude to the Department of Science & Technology (DST) , Govt. of

India, for financial assistance through INSPIRE Fellowship leading for a PhD work under which this work

has been carried out, at the department of Computer Science & Engineering, University of Kalyani.

REFERENCES

[1] Chien-Lung Wang, Tzung-Pei Hong, Gwoboa Horng and Wen-Hung Wang, A GA-based Key-Management

Scheme in Hierarchical Wireless Sensor Networks, International Journal of Innovative Computing, Volume

5,Number 12(A), pp. 4693-4702, ISSN1349-4198, December 2009.

[2] M. Ito and M. Tanaka, Localization of a Moving Sensor by Particle Filters, International Journal of Innovative

Computing, Information and Control, vol. 4, no. 1, pp.165-174, 2008.

[3] W. Du, J. Deng, Y. S. Han and P. K. Varshney, A Key Predistribution Scheme for Sensor Networks Using

Deployment Knowledge, IEEE Transactions on Dependable and Secure Computing, 2006.

[4] S. Camtepe and B. Yener, Key Distribution Mechanisms for Wireless Sensor Networks: A Survey, Rensselaer

Polytechnic Institute, Troy, New York, Technical Report 05-07, 2005.

[5] S. Hahm, Y. Jung, S. Yi, Y. Song, I. Chong, and K. Lim, A Self-organized Authentication Architecture in Mobile

Ad-hoc Networks, International Conference on Information Networking, pp.96-104, 2005.

[6] M. A. Moharrum, M. Eltoweissy, A Study of Static Versus Dynamic Keying Schemes in Sensor Networks, ACM

Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, 2005.

[7] A. Price, K. Kosaka, and S. Chatterjee, A Key Pre-distribution Scheme for Wireless Sensor Networks, Wireless

Telecommunications Symposium, pp.253-260, 2005.

[8] M. Ramkumar, N. Memon, On the Security of Random Key Predistribution Schemes, The Fifth Annual IEEE

Information Assurance Workshop, New York, 2004.

[9] H. Chan, A. Perrig, D. Song, Random Key Pre-distribution Schemes for Sensor Networks, IEEE Symposium on

Security and Privacy, Berkeley, California, pp.197-213, 2003.

[10] M. Ramkumar, N. Memon, R. Simha, Pre-Loaded Key Based Multicast and Broadcast Authentication in Mobile

Ad-Hoc Networks, IEEE Globe Telecommunication Conference, San Fransisco, CA, 2003.

[11] S. Zhu, S. Setia and S. Jajodia, LEAP: Efficient Security Mechanisms for Large-Scale Distributed Sensor

Networks, ACM Conference on Computer and Communications Security, 2003.

[12] L. Eschenauer and V.D. Gligor, A Key-Management Scheme for Distribution Sensor Networks, ACM Computer

and Comm. Security, pp.41-47, 2002.

IJINS ISSN: 2089-3299

Evolutionary Computation Guided Energy Efficient Key Organization in Wireless Com (Arindam Sarkar)

31

[13] J. Kong, H. Luo, K. Xu, D. L. Gu, M. Gerla and S. Lu, Adaptive Security for Multilevel Ad Hoc Network, Wireless

Communication and Mobile Computing, 2002.

[14] G. Y. Lee; Y. Lee, Efficient Rekey Interval for Minimum Cost on Secure Multicast System Using Group Key,

IEEE Global Communications Conference, Taipei, Taiwan, vol. 2, pp.1995-1999, 2002.

[15] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar, SPINS: Security Protocols for Sensor Networks, ACM

Annual International Conference on Mobile Computing and Networking, pp.189-199, 2001.

[16] Y. Richard Yang, X. Steve Li, X. Brian Zhang, S. Simon Lam, Reliable Group Rekeying: A Performance

Analysis, ACM Annual Conference of the Special Interest Group on Data Communication, vol. 31, Issue 4,

2001.

[17] A. Weimerskirch and G. Thonet, A Distributed Light-Weight Authentication Model for Ad-hoc Networks,

International Conference on Information Security and Cryptology, 2001.

[18] E. Stajano, R. Anderson, The Resurrecting Duckling: Security Issues in Ad-Hoc Wireless Networks, International

Workshop on Security Protocols, 1999.

[19] F. Herrera, M. Lozano and J. L. Verdegay, Fuzzy connectives based crossover operators to model genetic

algorithms population diversity, Fuzzy Sets and Systems, vol. 92, no. 1, pp.21-30, 1997.

[20] David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1989.

[21] R. Blom, An Optimal Class of Symmetric Key Generation Systems, Advances in Cryptology: Proceedings of

EUROCRYPT, pp.335-338, 1984.

[22] E. T. Jaynes, Information theory and statistical mechanics, Physical Review, vol. 106, pp.361-373, 1957.

[23] Rui Zhou , Hua Yang , A hybrid key management scheme for Heterogeneous wireless sensor networks

based on ECC and trivariate symmetric polynomial, Uncertainty Reasoning and Knowledge

Engineering (URKE) 2011 International Conference on, sponsored by IEEE pp. 251 – 255, Print

ISBN: 978-1-4244-9985-4, 2011.

[24] Chen Chen; Zheng Huang; Qiaoyan Wen; Yajun Fan, A novel dynamic key management scheme for

wireless sensor networks, 4th IEEE International Conference on Broadband Network and Multimedia

Technology (IC-BNMT), pp. 549 – 552, Print ISBN: 978-1-61284-158-8, 2011.

BIOGRAPHY OF AUTHORS

Arindam Sarkar

INSPIRE Fellow (DST, Govt. of India) at the department of Computer Science & Engineering,

University of Kalyani, MCA (VISVA BHARATI, Santiniketan, University First Class First

Rank Holder), M.Tech (CSE, K.U, University First Class First Rank Holder). Total number of

publications 12.

Jyotsna Kumar Mandal

M. Tech.(Computer Science, University of Calcutta), Ph.D.(Engg., Jadavpur University) in the

field of Data Compression and Error Correction Techniques, Professor in Computer Science and

Engineering, University of Kalyani, India. Life Member of Computer Society of India since

1992 and life member of cryptology Research Society of India. Dean Faculty of Engineering,

Technology & Management, working in the field of Network Security, Steganography, Remote

Sensing & GIS Application, Image Processing. 25 years of teaching and research experiences.

Eight Scholars awarded Ph.D. one submitted and 8 are pursuing. Total number of publications

230.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rui%20Zhou.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hua%20Yang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5993769
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5993769

