

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

International Journal of Information & Network Security (IJINS)

Vol.2, No.1, February 2013, pp. 78~90

ISSN: 2089-3299 78

Journal homepage: http://iaesjournal.com/online/index.php/ IJINS

Modeling and Verification of Access Rights in Take-Grant

Protection Model Using Colored Petri Nets

Saeid Pashazadeh
Faculty of Electrical and Computer Engineering, University of Tabriz

Article Info ABSTRACT

Article history:

Received Oct 08
th

, 2012

Accepted Oct 26
th

, 2012

 Take-Grant protection model (TGPM) is a powerful method for modeling

access rights in a wide range of systems. It is graph based formal method that

can be used for studying situations that rights may unintentionally be

transferred as rights leakage. Deduction of new rights using rules of this

model is difficult and time-consuming task especially for systems that have

numerous parties and many rights between them. In this paper a novel model

of TGPM using colored Petri net is presented. Using model checking of state

space of the model we can prove that a party in the system can have specific

right over other party or not? If a right leakage exists, model checking of

state space of the model can generate automatic proof for it.

Keyword:

Take-Grant protection

Modeling

Model checking

Verification

Proof generator

Copyright © 2013 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Saeid Pashazadeh,

Departement of Information Technology,

Faculty of Electrical and Computer Engineering,

University of Tabriz,

29
th

 Bahman Boulevard, Tabriz, East Azerbaijan Province, Iran

Email: pashazadeh@tabrizu.ac.ir

1. INTRODUCTION

Leakage of rights is one of the security threats in most computerized systems that a user or

application may earn in the system. Right leakage is hidden in first glance and it is possible to be detected

only by accurate analysis of the system. TGPM is a formal graph based method for modeling rights in wide

range of systems. Labels of edges in TGPM graph represent rights of a system and vertexes of the graph

represent subjects or objects of the system [1]. TGPM works based on the four basic rules. Hierarchical

TGPM is introduced for modeling complex systems [2]. TGPM is another alternative to classical access

control matrixes but has greater capabilities in comparison with them [3]. TGPM is a useful method for rights

representation in wide range of systems especially in non-computerized applications. It permits us to study

the security policies of the system and ensure that permissions of the system follows from constraints of the

security policy [4]. TGPM is extended to support more complex and realistic real systems [5].

Hierarchical colored Petri net is powerful formal modeling language with great modeling

capabilities. It permits formal modeling and verification of wide range of systems like proof generator of

functional dependencies for normalization of databases, mechanism of concurrency controls in distributed

database systems and communication protocols of different levels of computer networks [6, 7]. Colored Petri

net can easily be applied in formal verification of security protocols and mechanism. TGPM is modeled using

colored Petri net in this paper. Then a sample case study scenario is presented and state space graph of the

system is generated. Finally, proof of a specific access right is explored in state space graph of the model

using model checking.

IJINS ISSN: 2089-3299

Modeling and Verification of Access Rights in Take-Grant Protection Model (Saeid Pashazadeh)

79

2. COLOR SETS, VARIABLES AND INITIAL MARKINGS

In this part, brief descriptions of color sets, variables and initial markings that are used in modeling

of the protocol are presented.

2.1. Color Sets

Color sets that are used in modeling of protocol are as follows:

colset VERTEXTYPE = with S | O | M;

colset VERTEXID = STRING;

colset RIGHT = with t | g | r | w | e | a;

colset RIGHTS = list RIGHT;

colset RULETYPE = with I | T | G | C | R;

colset PREDPERMLIST = list INT;

colset PERMGEN = product RULETYPE*PREDPERMLIST;

colset PERM = record N:INT * ST:VERTEXTYPE * SI:VERTEXID * R:RIGHTS *

DT:VERTEXTYPE * DI:VERTEXID * G:PERMGEN;

colset PERMS = list PERM;

Color set VERTEXTYPE represents vertex types in TGPM. S stands for subject, O for object and M

for either subject or object. Color set VERTEXID is defined to represent the identifier of vertexes of the

TGPM and is of type STRING. Color set RIGHT represents different rights (access types) in the graph. Color

set RIGHTS is used to represent the list of rights that edges of TGPM can have. Color set RULETYPE

represents first letter of a rule that is used in deduction of new edge of graph. Color set PREDPERMLIST is

defined as list of integer values and represents list of rights (edges) that are used for deduction of a new edge

by rules of the system. Color set PERMGEN represents type of rule and list of rights that are used for

deduction of current right.

Colour set PERM is defined for fully introducing a right in TGPM. It is a record that contains seven

fields. First field is denoted with title N and is of type integer and represents the number (index) of current

right. Second field is denoted with title ST and is of type VERTEXTYPE and represents the type of source

vertex of current right. Third field is denoted with the title SI and is of type VERTEXID and represents the

identifier of source vertex of current right. Fourth field is denoted with title R and is of type RIGHTS and

represents the list of rights of current edge. Fifth field is denoted with DT and is of type VERTEXTYPE and

sixth field is denoted with DI and is of type VERTEXID and respectively represent the type and identifier of

destination vertex of each right. Last field is denoted with title G and is of type PERMGEN and represents

that which rights and rule are used for deducing current right. Color set PERMS is defined to represent all

rights of the TGPM.

2.2. Variables and Initial Markings

A simple case study is modeled in this paper. Figure 1.a shows a sample TGPM and Figure 1.b

shows a permission that we want to study it. We want to test that: Can permission of Figure 1.b be deducted

using rules of TGPM from current rights of the system? How such leakage of right can occures?

Figure 1.a) TGPM graph of a case study system. b) Specific right of under study

Initial parties and rights of the system are shown in Figure 1.a. These rights are represented as

following initial marking of place Perms in the CPN model of system.

Val InitialPerms=[{N=1,ST=S,SI="A",R=[g],DT=S,DI="B",G=(I,[])},

 {N=2,ST=S,SI="C",R=[t],DT=S,DI="B",G=(I,[])},

 {N=3,T=S,SI="C",R=[w],DT=M,DI="D",G=(I,[])}]

Variables of the model are as follows:

var L, L1, Lt, Lg : PERMS; var u:UNIT; var c, ct, cg :BOOL;

2.3. Model of TGPM System

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 78 – 90

80

Figure 2 shows the CPN model of TGPM system. Model is designed such that create and remove

transitions fires only once. Multiple firing of create transition creates redundant rules.

Figure 2. CPN model of TGPM system

Take and grant transitions can fire repeatedly. Transition remove fires after firing of transition create

and when transitions take and grant cannot fires. Transitions that are related to rules of the TGPM follows a

similar template. Guard condition of these transitions calls related function of these transitions. These

functions get a list of current rights of the system as input and return a list of newly generated rights using

related rule and a Boolean output value as results. If a newly generated right exists in the list of current

existing rights or in the list of newly generated rights, it will not append to the list of newly generated rights

for prohibiting existance of repeated rights. If a new deducted right is not repeated, then function adds this

new right in the list of newly generated rights. If function cannot produce any new right using a rule, then it

returns false and in otherwise it returns true. If transition of a rule cannot produces new rules, it will not

become enabled.

3. FUNCTIONS OF MODEL

In this part a brief description of model's functions is presented. Figure 3 shows the structure chart

of model's functions.

Figure 3. Structure chart of model's functions

IJINS ISSN: 2089-3299

Modeling and Verification of Access Rights in Take-Grant Protection Model (Saeid Pashazadeh)

81

Recursive function hasRight takes a right and a list of rights and searches this right in the list of

rights. If the right exists in the list, function returns true and in otherwise returns false.

fun hasRight(f:RIGHT,(h::L):RIGHTS):bool =

 if f = h then

 true

 else

 hasRight(f,L)

| hasRight(_,[]) = false;

Function isSubset takes two lists of the rights and if rights of the first list is subset of rights of

second list, it returns true and in otherwise returns false.

fun isSubset(L1:RIGHTS, L2:RIGHTS):bool =

 let val n1 = List.length(L1)

 val n2 = List.length(L2)

 val i = ref 0

 val j = ref 0

 val Found = ref true

 in if n1 > n2 then

 false

 else(

 while !i < n1 andalso !Found do(

 let val F1 = List.nth(L1,!i)

 in j := 0;

 Found := false;

 while !j < n2 andalso !Found = false do(

 let val F2 = List.nth(L2,!j)

 in if F1 = F2 then Found := true

 else ()

 end;

 j := !j+1) (* while j *)

 end;

 i := !i+1); (* while i *)

 !Found

)

 end

| isSubset([],[]) = true

| isSubset(_,[]) = false

| isSubset([],_) = false;

Function getPermIndex takes a right as first parameter and list of rights as second parameter and

returns index of first right in the list of rights of second parameter starting from index zero. If it can not find,

returns -1.

fun getPermIndex(f:PERM, (h::L):PERMS):int =

 if #ST f = #ST h andalso #SI f = #SI h andalso #DT f = #DT h andalso

 #DI f = #DI h andalso isSubset(#R f,#R h)

 then 0

 else

 let val res = getPermIndex(f,L)

 in if (res <> ~1) then

 res+1

 else ~1

 end

| getPermIndex(_,[]) = ~1;

Function isPermExists takes a right as first parameter and list of rights as second parameter and if

right of first parameter exists in the list of rights of the second parameter, then function returns true and in

otherwise returns false.

fun isPermExists(f:PERM, L:PERMS):bool =

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 78 – 90

82

 let val n = getPermIndex(f,L)

 in if n <> ~1 then

 true

 else

 false

 end

| isPermExists (_,[]) = false;

Function getIndex takes a value as first parameter and list of values as second parameter. It returns

position of first parameter in the list of second parameter (index starts from zero) and in otherwise returns -1.

fun getIndex(f,(h::L)):int =

 if f = h then 0

 else

 let val res = getIndex(f,L)

 in if (res <> ~1) then

 res+1

 else ~1

 end

| getIndex(_,[]) = ~1;

Function Remove takes list of current rights in the system as input and produces a list of new rights

using remove rule of the TGPM.

fun Remove(L:PERMS):PERMS * bool =

 let val L2 = ref [] val n = List.length(L)

 val i = ref 0 val j = ref 0

 val cs = ref 0 val Found = ref false

 val Gen = ref false val nr = ref 0

 in

 nr := n+1;

 while !i<n do(

 let val F1 = List.nth(L,!i)

 val ta ={N=(!nr),ST=(#ST F1),SI=(#SI F1),R=[],DT=(#DT F1),

 DI=(#DI F1), G=(T,[#N F1])}

 in

 if #ST F1 = S then(

 L2 := !L2^^[ta];

 nr := !nr+1;

 Found := true)

 else ()

 end;

 i := !i+1); (* while i *)

 (!L2,!Found)

 end

| Remove([]) = ([],false)

Function Take gets a list of current rights of the system and produces new rights using take rule of

TGPM. This function returns list of new deductable rights as first output. If this function can produce new

rights, it returns true in second output parameter and in otherwise returns false.

fun Take(L:PERMS):PERMS* bool =

 let val L2 = ref [] val n = List.length(L)

 val i = ref 0 val j = ref 0

 val cs = ref 0 val Found = ref false

 val Gen = ref false val nr = ref 0

 in

 nr := n+1;

 while !i < n do (

 let val F1 = List.nth(L,!i)

 in j := 0;

 while !j < n do (

 if !i < !j then

 let val F2 = List.nth(L,!j)

 val ta = {N=(!nr), ST=(#ST F1), SI=(#SI F1), R=(#R F2),

IJINS ISSN: 2089-3299

Modeling and Verification of Access Rights in Take-Grant Protection Model (Saeid Pashazadeh)

83

 DT=(#DT F2), DI=(#DI F2),G=(T,[#N F1, #N F2])}

 val tb = {N=(!nr), ST=(#ST F2), SI=(#SI F2), R=(#R F1),

 DT=(#DT F1), DI=(#DI F1),G=(T,[#N F2, #N F1])}

 in if #ST F1 = S andalso (#DT F1 = S orelse #DT F1 = M)

 andalso #DT F1=#ST F2 andalso #DI F1 = #SI F2 andalso

 hasRight(t,#R F1) andalso #SI F1 <> #DI F2 then

 (cs :=1; Gen := true)

 else if #ST F2 = S andalso (#DT F2 = S orelse #DT F2 = M)

andalso #DT F2= #ST F1 andalso #DI F2 = #SI F1 andalso

hasRight(t,#R F2) andalso #SI F2 <> #DI F1 then

 (cs := 2; Gen := true)

 else (cs := 0; Gen := false);

 case (!cs) of

 1 => if !Gen=true andalso not(isPermExists(ta,L))

 andalso not(isPermExists(ta,!L2)) then

 (L2 := !L2^^[ta];

 nr := !nr+1;

 Found := true)

 else ()

 | 2 => if !Gen=true andalso not(isPermExists(tb,L))

 andalso not(isPermExists(tb,!L2)) then

 (L2 := !L2^^[tb];

 nr := !nr+1;

 Found := true)

 else ()

 |0 => ()

 end

 else ();

 j := !j+1) (* while j *)

 end;

 i := !i+1); (* while i *)

 (!L2,!Found)

 end

| Take([]) = ([],false)

Function Create gets a list of current rights of the system and produces new rights using create rule

of TGPM. This function returns list of new deductable rights as first output. If this function can produce new

rights, it returns true in second output parameter and in otherwise returns false.

fun Create(L:PERMS):PERMS * bool =

 let val L2 = ref [] val n = List.length(L)

 val i = ref 0 val index = ref 0

 val cs = ref 0 val Found = ref false

 val Gen = ref false val nr = ref 0

 val LI = ref []

 in

 nr := n+1;

 while !i< n do(

 let val F1 = List.nth(L,!i)

 in

 if #ST F1 = S then(

 index := getIndex(#SI F1,!LI);

 if (!index <> ~1) then ()

 else (LI := !LI^^[#SI F1];

 let val ta={N=(!nr),ST=S,SI=(#SI F1),R=[t,g,r,w,e,a],

 DT=M,DI=(#SI F1^"1"),G=(C,[#N F1])}

 in

 L2 := !L2^^[ta];

 nr := !nr+1;

 Found := true

 end)

) else ();

 if #DT F1 = S then (

 index := getIndex(#DI F1,!LI);

 if (!index <> ~1) then ()

 else (LI := !LI^^[#DI F1];

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 78 – 90

84

 let val ta={N=(!nr),ST=S,SI=(#DI F1),R=[t,g,r,w,e,a],

 DT=M, DI=(#DI F1^ "1"), G=(C,[#N F1])}

 in

 L2 := !L2^^[ta];

 nr := !nr+1;

 Found := true

 end)

)

 else ()

 end;

 i := !i+1); (* while i *)

 (!L2,!Found)

 end

| Create([]) = ([],false)

Function Grant gets a list of current rights of the system and produces new rights using grant rule of

TGPM. This function returns a list of new deductable rights as first output. If this function can produce new

rights, it returns true in second output parameter and in otherwise returns false.

fun Grant(L: PERMS) : PERMS* bool =

 let val L2 = ref [] val n = List.length(L)

 val i = ref 0 val j = ref 0

 val cs = ref 0 val Found = ref false

 val Gen = ref false val nr = ref 0

 in

 nr := n+1;

 while !i < n do (

 let val F1 = List.nth(L,!i)

 in j := 0;

 while !j < n do (

 if !i < !j then

 let val F2 = List.nth(L,!j)

 val ta ={N=(!nr),ST=(#DT F1),SI=(#DI F1),R=(#R F2),

 DT=(#DT F2),DI=(#DI F2),G=(G,[#N F1,#N F2])}

 val tb ={N=(!nr),ST=(#DT F2),SI=(#DI F2),R=(#R F1),

 DT=(#DT F1),DI=(#DI F1),G=(G,[#N F2,#N F1])}

 val tc={N=(!nr+1),ST=(#DT F2),SI=(#DI F2),R=(#R F1),

 DT=(#DT F1),DI=(#DI F1),G=(G,[#N F2,#N F1])}

 in if #ST F1 = S andalso(#DT F1 = S orelse #DT F1 = M)

andalso #ST F1=#ST F2 andalso #SI F1=#SI F2

andalso hasRight(g,#R F1)andalso #DI F1<>#DI F2

then (cs :=1; Gen := true)

else (cs:= 0; Gen := false);

 if #ST F2=S andalso(#DT F2 = S orelse #DT F2 = M)

 andalso #ST F2 = #ST F1 andalso #SI F2 = #SI F1

 andalso hasRight(g,#R F2)andalso #DI F2<> #DI F1

 then

 (if !cs = 0 then cs:=2 else cs:=3; Gen:=true)

 else ();

 case (!cs) of

 1=>if not(isPermExists(ta,L))andalso

 not(isPermExists(ta,!L2))then

 (L2 := !L2^^[ta];

 nr := !nr+1;

 Found := true)

 else ()

 |2=>if not(isPermExists(tb,L))andalso

 not(isPermExists(tb,!L2))then

 (L2 := !L2^^[tb];

 nr := !nr+1;

 Found := true)

 else ()

 |3=>(if not(isPermExists(ta,L))andalso

 not(isPermExists(ta,!L2))then

 (L2 := !L2^^[ta];

 nr := !nr+1;

IJINS ISSN: 2089-3299

Modeling and Verification of Access Rights in Take-Grant Protection Model (Saeid Pashazadeh)

85

 Found := true)

 else ();

 if not(isPermExists(tc,L))andalso

 not(isPermExists(tc,!L2))then

 (L2 := !L2 ^^ [tc];

 nr := !nr +1;

 Found := true)

 else ())

 |0 => ()

 end

 else ();

 j := !j+1) (* while j *)

 end;

 i := !i+1); (* while i *)

 (!L2,!Found)

 end

| Grant([]) = ([],false)

4. STATE SPACE GRAPH OF CASE STUDY MODEL

State space report of TGPM model using case study scenario that is shown in Figure 2 is as follows:

 State Space Liveness Properties

 Nodes: 42 Dead Markings

 Arcs: 41 […,42,41,40,38,37] 8

 Secs: 0 Dead Transition Instances

 Status: Full None

 Scc Graph Live Transition Instances

 Nodes: 42 None

 Arcs: 41

 Secs: 0

 Figure 4 shows the complete state space graph of the model intruced case study scenario in part 2.2.

Extracting proof from state space requires model checking of the state space.

Figure 4. State space graph of model with case study scenario

Although state space of the model only has 42 nodes, but each node contains a list of rights that

have many deducted rights using rules of TGPM. In designing color sets of the model, for each of the rights

of the system a field that represents index of prerequisite rights and the rule that is used in deduction of

current right is considered as explained in part 2.1.

5. MODEL CHECKING AND PROOF EXTRACTION

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 78 – 90

86

5.1. Functions of Model Checking

Text-based notation is used for representing steps of proof in this paper. A subject node X in TGPM

is represented by notation ((X)), object Y is represented by [Y] and subject or object Z with (Z). Permission

of Figure 1.b will be represented in textual form as ((A))-t->(B).

Figure 5 shows the structure chart of functions that are used in extracting proof of permission by

analyzing nodes of state space graph of the model.

Figure 5. Structure chart of functions that are used in extracting proof of permission

Function vertexTypeStr gets two parameters that first parameter represents the vertex type of a node

in TGPM. If Second parameter be 1, function returns a string that contains characters that must appear before

title of a vertex node in text-based notation of permission rules and if it be 2, function returns a string that

contains characters that must appear after title of a vertex node.

fun vertexTypeStr(vt : VERTEXTYPE , n : int) : string =

 if n =1 then

 case vt of

 S => "(("

 | O => "["

 | M => "("

 else

 case vt of

 S => "))"

 | O => "]"

 | M => ")";

Function rightToStr takes a parameter of colorset RIGHT that represents one of the constituting

rights of an arc in TGPM and converts it to equivalent text-based notation.

fun rightToStr(rg : RIGHT):string =

 case rg of

 t => "t" | g => "g" | r => "r" | w => "w" | e => "e" | a => "a";

Function vertexStr gets a parameter of colorset VERTEXID and a parameter of type

VERTEXTYPE that represent identifier and type of a vertex node of TGPM and returns equivalent text-

based notation of this node. It calls function VertexTypeStr.

fun vertexStr(VI :VERTEXID ,VT: VERTEXTYPE):string =

 vertexTypeStr(VT,1)^VI^vertexTypeStr(VT,2);

IJINS ISSN: 2089-3299

Modeling and Verification of Access Rights in Take-Grant Protection Model (Saeid Pashazadeh)

87

Function rightsToStr takes a parameter of colorset RIGHTS that represents a list of rights in a single

arc of TGPM. This function converts all rights of single edge of graph to equilavent string format using

function rightToStr without space between names of rights.

fun rightsToStr(rg: RIGHTS):string =

 let val n = List.length(rg)

 val i = ref 0

 val s = ref ""

 in while !i < n do (

 let val t1 = List.nth(rg, !i)

 in s := rightToStr(t1) ^ !s

 end;

 i := !i+1);

 !s

 end

| rightsToStr([]) = "";

Function ruleTypeToStr takes a parameter of colorset RULETYPE and returns its text based

representation.

fun ruleTypeToStr(rt: RULETYPE):string =

 case rt of

 I => "Initial Access"

 | T => "Take"

 | G => "Grant"

 | C => "Ceate"

 | R => "Remove";

Recursive function getRuleIndex takes a permission number n as first parameter and a list of

permissions as second parameter and returns position of permission n in the list of permissions (starting from

index 0). If no permission with number n exists in the list of permissions in the second parameter, function

returns -1 as the result.

fun getRuleIndex (n: INT ,(rl::L):PERMS):int=

 if n=#N rl then 0

 else

 let val res = getRuleIndex(n,L)

 in if (res <> ~1) then

 res+1

 else ~1

 end

| getRuleIndex(_,[]) = ~1;

Function permToStr takes a list of permissions pr and a permission p as input parameters and

converts it to text-based representation. This recursive function calls functions vertexStr, rightsToStr,

getRuleIndex and ruleTypeToStr.

fun permToStr(pr: PERMS, p:PERM):string =

 let val st = ref ""

 val i1 = ref 0

 val iL = ref 0

 val s1 = ref " "

 in

 if #1(#G p) = I then

 st:=vertexStr(#SI p,#ST p)^"-"^rightsToStr(#R p)^"->"^vertexStr(#DI p,#DT p)

 else (

 let val Len= List.length (#2(#G p))

 in

 while !iL < Len do (

 i1 := getRuleIndex(List.nth((#2(#G p)), !iL) ,pr);

 s1 := !s1^ permToStr(pr, List.nth(pr, !i1));

 iL := !iL+1;

 if (!iL < Len) then s1 := !s1^","

 else ()

);

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 78 – 90

88

 st:="{"^!s1^"="^ruleTypeToStr(#1(#G p))^"=>"^vertexStr(#SI p,

 #ST p)^"-"^rightsToStr(#R p)^"->"^vertexStr(#DI p,#DT p)^"}\n"

 end);

 !st

 end;

Function extractProof takes a list of permissions as first input parameter and index number of a

specific permission as second parameter, then returns the proof in the form of general list and saves it in the

file "Proof.txt" via calling function permToStr.

fun extractProof(p:PERMS, n:INT):string =

 let val ff = List.nth(p, n)

 val s = ref ""

 val f = TextIO.openOut "Proof.txt"

 in s := permToStr(p, ff);

 TextIO.output(f, !s);

 TextIO.closeOut f;

 !s

 end

| extractProof([],_)="";

5.2. ML Codes of State Space Analysis

Constant finalPerm defines specific permission that its leakage is under study. From now, I name it

target permission and use the model to test that, can subject A earn write permission on object D or not?

val finalPerm ={N=1,ST=S,SI="A",R=[w],DT=M,DI="D",G=(I,[])}:PERM;

Function findNodes gets a node n of state space as input and if target permission (finalPerm)

appears in any nodes of the state space of the model, returns true and in otherwise returns false. Function

ms_to_col is a build-in function of CPNTool and converts a multi set of a state space node to a list.

fun findNodes n=(isPermExists(finalPerm,ms_to_col(Mark.Model'Perms 1 n))

 = true)

Signiture of function findNodes is as follows:

val findNode = fn: Node −> bool

Following ML code returns the list of state space nodes that contains target permission.

PredAllNodes findNodes;

It is possible that target permission appears in more than one nodes of the state space. Output of

executing this ML code on state space graph of case study model is as follows:

Val it=[42,41,40,39,38,37,36,35,34,33,32,31,30,29,28,27,25,24,22,21,17]:Node list

For simplicity, first node of the following list is used for extracting proof of target permission.

Following ML code extracts index of first node of state space graph that contains target permission:

List.hd (PredAllNodes findNodes);

Output of this ML code is as follows:

val it = 42 : Node

Following ML code returns list of permissions that exists in state space node with number 42.

ms_to_col (Mark.Model'Perms 1 (List.hd (PredAllNodes findNodes))

Following ML code returns index of target permission in list of permissions of the first selected

node (42) of state space.

IJINS ISSN: 2089-3299

Modeling and Verification of Access Rights in Take-Grant Protection Model (Saeid Pashazadeh)

89

getPermIndex(finalPerm,ms_to_col(Mark.Model'Perms 1

 (List.hd(PredAllNodes findNodes))));

Output of this ML code is as follows:

val it = 27 : int

It represents that our target permission is appeared in 27
th

 permission of node 42 of state space. Following

ML code returns number of permissions in the list of permissions of node 42 of state space.

List.length(ms_to_col(Mark.Model'Perms 1

 (List.hd(PredAllNodes findNodes))));

Output of this ML code is as follows:

Val it = 47 : int

Following ML code extract the proof of target permission (finalPerm) from the first node of the state

space that this permission appeared in it. Proof of the way that target permission occurs can be extracted by

backward tracing of prerequisite rights of target right.

extractProof(ms_to_col(Mark.Model'Perms 1 (List.hd(PredAllNodes

findNodes))), getPermIndex(finalPerm,ms_to_col(Mark.Model'Perms 1

(List.hd (PredAllNodes findNodes)))));

Output of the function ExtractProof in the form of general list is as follows:

{

 { ((A))-g->((B)) =Ceate=> ((A))-aewrgt->(A1)},

 {

 {

 ((C))-t->((B)),

 {

 ((A))-g->((B)),{((A))-g->((B)) =Ceate=> ((A))-aewrgt->(A1)} =Grant=>

 ((B))-aewrgt->(A1)

 } =Take=> ((C))-aewrgt->(A1)

 },

 ((C))-w->(D) =Grant=> (A1)-w->(D)

 } =Take=> ((A))-w->(D)

}

For more clarity, I drew automatically generated proof in simple graph-based format as is shown in

Figure 6. If we want to test whether current system can have special right leakage, it is sufficient that we

search list of rights in all nodes of state space graph. If we find that right, then right leakage can happen.

Proof of the way that this leakage occurs can be extracted using function extractProof.

 ISSN: 2089-3299

IJINS Vol. 2, No. 1, February 2013 : 78 – 90

90

Figure 6. Steps 1 to 5 shows steps of automatically generated proof of write permission of subject "A" on

object "D" in graph representation

6. CONCLUSION

Colored Petri net is powerful formal method with great modeling capabilities and facilities for

model checking. In this paper, TGPM along with a simple case study scenario is modeled using colored Petri

net. State space of this model is analyzed using model checking and leakage of a sample right is studied.

Results show that state space of the model is generated in short time and automatic proof of right leakage can

be generated easily. Manual testing right leakage in big systems is very tedious work that is not feasible

without using automatic proof generator tools.

REFERENCES
[1] A. K. Jones, et al., "A Linear Time Algorithm For Deciding Security," 17th Annual Symposium on Foundations of

Computer Science, pp. 33-41, 1976.

[2] M. Bishop, "Hierarchical Take-Grant Protection Systems," 8th ACM symposium on Operating systems principles,

Pacific Grove, California, United States, 1981.

[3] M. A. Harrison, "Theoretical Issues Concerning Protection in Operating Systems," EECS Department, University of

California, Berkeley UCB/CSD-84-170, 1984.

[4] M. Bishop, "Applying The Take-Grant Protection Model," Technical Report PCS-TR90-151, Dept. of Computer

Science, Dartmouth College, Hanover, NH 03755 (1990)

[5] M. Bishop, Computer Security: Art and Science: Addison-Wesley, 2003.

[6] S. Pashazadeh and M. Pashazadeh, "Modelling An Automatic Proof Generator For Functional Dependency Rules

Using Colored Petri Net," International Journal in Foundations of Computer Science & Technology (IJFCST), vol.

2, no. 5, pp. 31-47, September 2012.

[7] S. Pashazadeh, "Modeling and Verification of Deadlock Potentials of a Concurrency Control Mechanism in

Distributed Databases Using Hierarchical Colored Petri Net," International Journal of Information and Education

Technology (IJIET), vol. 2, no. 2, pp. 77-82, April 2012.

BIOGRAPHY OF AUTHOR

Saeid Pashazadeh is Assistant Professor of Software Engineering and chair of Information

Technology Department at Faculty of Electrical and Computer Engineering in University of

Tabriz in Iran. He received his B.Sc. in Computer Engineering from Sharif Technical University

of Iran in 1995. He obtained M.Sc. and Ph.D. in Computer Engineering from Iran University of

Science and Technology in 1998 and 2010 respectively. He was Lecturer in Faculty of Electrical

Engineering in Sahand University of Technology in Iran from 1999 until 2004. His main

interests are modeling and formal verification of distributed systems, computer security and

wireless sensor/actor networks. He is member of IEEE and senior member of IACSIT and

member of editorial board of journal of electrical engineering at University of Tabriz in Iran.

