

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

International Journal of Information & Network Security (IJINS)

Vol.3, No.1, February 2014, pp. 12~17

ISSN: 2089-3299  12

Journal homepage: http://iaesjournal.com/online/index.php/ IJINS

Automatic Feature Extraction, Categorization and Detection of

Malicious Code in Android Applications

Muhammad Zuhair Qadir*, Atif Nisar Jilani*, Hassam Ullah Sheikh**
* Departement of Computer Science, Lahore University of Management Sciecnes

** School of Computer Science, University of Manchester

Article Info ABSTRACT

Article history:

Received Dec 27
th

 , 2013

Revised Jan 20
th

, 2014

Accepted Feb 10
th

, 2014

 Since Android has become a popular software platform for mobile devices

recently; they offer almost the same functionality as personal computers.

Malwares have also become a big concern. As the number of new Android

applications tends to be rapidly increased in the near future, there is a need

for automatic malware detection quickly and efficiently. In this paper, we

define a simple static analysis approach to first extract the features of the

android application based on intents and categories the application into a

known major category and later on mapping it with the permissions

requested by the application and also comparing it with the most obvious

intents of category. As a result, getting to know which apps are using

features which they are not supposed to use or they do not need.

Keyword:

Feature extraction

Malicious code

Android

Categorization

Automated approach Copyright @ 2014 Insitute of Advanced Engineeering and Science.

All rights reserved.

Corresponding Author:

Hassam Ullah Sheikh,

School of Computer Science,

University of Manchester,

Oxford Road, Manchester, UK, M13 9PL

Email: sheikhh@cs.man.ac.uk

1. INTRODUCTION

Android has seen a tremendous growth since its introduction in the market. The numbers of

applications are growing with extraordinary volume. It has a wide of variety of applications targeting various

needs and use cases. Since its launch the privilege to the developers who can upload any application draws

attention to the malicious developers whose intents are to deceive and take advantage of this privilege and

without much inspection it is getting hard to investigate a valid and benign application which can filter out

the malicious application from the pool of millions of apps. Malicious code is being injected into mobile

applications and threatens the privacy of user’s personal data and device integrity also it can lead to breaches

of user data and violate application security policies. In 2011, malware attacks are increased by 155 percent

across all platforms [1] in particular, Android is the platform with the highest malware growth rate by the end

of 2011.

Static detection techniques (also called signature matching) have high detection rates and consume

fewer resources [8]. Static analysis of these applications can result in faster detection of malicious apps and

as it involves automatic application code lookup and detecting required content without running it or testing

it. Static analysis of Android applications is important because quality and reliability are keys to success on

the Android market [2]. Because of diversity of applications available in different markets, there is a need to

categories the application first. We perform static analysis on Android applications in order to determine the

feature set of the application based on its functionality. Our program also looks for the category in which the

app should fall.

mailto:sheikhh@cs.man.ac.uk

IJINS ISSN: 2089-3299 

Automatic Feature Extraction, Categorization and Detection of Malicious (Muhammad Zuhair Qadir)

13

2. RESEARCH METHOD

There is lot of study on dynamic and static approaches for android malware detection analysis.

Static being faster as it does not require runtime cost and exploiting the code on runtime. Confidentiality and

authorization are two key goals which are addressed in program analysis techniques. SCanDroid extracts

security specifications from the manifest of an app and checks whether data flows through the app are

consistent with the stated specifications [3]. Tabe1 [4] gives the crisp comparison of the tools being made to

address various malicious code detection and analysis with various techniques. They are various tools written

on static analysis among them the most famous one used in AndroGuard [5] it’s an open source project to

statically detect Android malwares, it basically reverse engineer APK from byte code (assembly source code)

to readable format and afterward it visualizes your application with Gephi which is a control flow graph of

the method. Check if an android application is present in a database or not, it maintains the list of pre-defined

malware's. Also it compares the control flow graph of both the application to check the similarity between

that malware and the given application.

There are various papers which works on the permission analysis approach, one [7] of them detects

whether an app is over privileged or underprivileged/ This can be very useful as developers develop apps and

without much concern adds more permissions to the app whereas the code itself requires very less number of

permissions comparatively.
Table1: Comparison

Crowdroid [12] is a machine learning-based framework that recognizes Trojan-like malware on

Android smartphones, by analyzing the number of times each system call has been used by an application

during the execution of an action that requires user interaction. A genuine application differs from its

trojanized version, since it issues different types and a different number of system calls. Crowdroid builds a

vector of m features (the Android system calls). Another technique [19] which monitors both the smartphone

and user’s behaviors by observing that continuously monitors various features and events obtained from the

mobile device from sensors activities to CPU usage. And then apply various algorithms like mining

techniques to classify the collected data as normal or abnormal. The main assumption in this techniques that

system metrics such as CPU consumption, number of sent packets through the Wi-Fi, number of running

processes, battery level etc. can be employed for detection of previously un-encountered malware by

examining similarities with patterns of system metrics induced by known malware.

Another paper [22] proposed a malicious application detection framework in which it uses both

static and dynamic detection technique. Uses an automatic feature extraction tool on android market built in

Solution Aim Flow Analysis Classification Policy Evaluation Scale

SCanDroid

Enforcement of

confidentiality,

integrity

Data, string Constraints on permission logics N/A

CHEX

Discovery of

exposed component

API

Data
Component exported to public

without restrictions
5,486 apps

RiskRanker

Detection of

abnormal

code/behavior

patterns

Data, control
Multiple malware behavior

signatures
118, 318 apps

Woodpecker
Firmware

permission
Data, control N/A

8 phone images,

13 permissions

AndroidLeaks Confidentiality Data Sensitive data used by risky APIs 24,350 apps

SCANDAL Confidentiality Data Sensitive data used by risky APIs
90 apps & 8

malware

Stowaway
Detection of

overprivileged apps

String, Intent

control flow

Compare required and requested

permissions
940 apps

ComDroid

Detection of apps

communication

vulnerabilities

Intent control

flow

Implicit Intent with weak or no

permission
100 apps

PiOS Confidentiality Data Sensitive data used by risky APIs 1,407 apps

UID
Identification of

unauthorized calls

Data, event

specific control

Trigger-operation dependence for

privileged function calls

708 apps & 482

malware

  ISSN: 2089-3299

IJINS Vol. 3, No. 1, February 2014 : 12 – 17

14

Javascript based on permissions, the framework performs a static detection based on methods of System API

calls and performs dynamic detection using machine learning on android market.

Basically it does static analysis on android application output of the readelf tool which extracts their system

calls and then they are compared with the pre-defined list of malicious applications from benign ones based

on the combinations of system calls used in the executable [8].

3. APPROACH

 We propose and implemented an approach to detect malicious applications statically. Android

applications can interact with other applications, and with the system, through a well-defined API. A number

of components can make up an application. In particular, Android defines activities, services, content

providers, and broadcast receivers. Activities, services, and broadcast receivers are activated by intents, i.e.,

asynchronous messages exchanged between individual components to request an action. Activity and service

intents specify actions to be performed. Conversely, broadcast receiver intents define the received event and

are delivered to the interested broadcast receivers. Our algorithm consists of three main steps

Step I: We get the set of APKs to analyze and transform to decompressed files and

then into byte code using APKTool [6].

Step II: Then we extract features of the application present in the byte code.

Step III: Categorize the application to known major categories.

Step IV: Relate features to category and point out features which are not needed for

the application and can be considered as malicious.

In this four step process, APKTool does the conversion part to get the readable format code of the

original APKs. While in the second step, feature extraction or more appropriately, code tagging is done

through our custom tool written in C++ which parse the code and gets all the intents of the code and tags it

with the detected features which will be used later. Intents provide an easy way to detect what an application

actually trying to do and how it is utilizing to the resources of the device. This step is crucial and essential

part of the algorithm making an intelligent system to separate benign apps and malicious apps. Our tool is

flexible as takes a file full of intents which should be extracted and tagged in the code. Making a useful

plugin for various alterations of this algorithm and also targeting specific type of malicious codes which

exploits certain features only.

Table 2. Intents targeted

No List of Some Targeted Intents

1 android.hardware.Camera.PictureCallback

2
android.telephony.SmsMessage

3
android.telephony.SmsManager

4
android.telephony.CellLocation

5
android.media.AudioRecord

6 android.location.LocationManager

Categorization can be done on the basis of group of intents and manifest file. Clustering can tell

specific APK falls in which android app category. We made another tool in C++ for to achieve this

categorization.

4. IMPLEMENTATION

We used APK tools for extracting code out of APK into samli code [10] which is actually sort of

byte code along with Dalvik Opcodes [11] and having its own syntax. APK tools is a very powerful tool

available at android’s developer website for various apk reverse engineering tasks. We wrote a batch script

which takes the application name , and after wards with the help of APK tool, it extracts all the folder that are

IJINS ISSN: 2089-3299 

Automatic Feature Extraction, Categorization and Detection of Malicious (Muhammad Zuhair Qadir)

15

compressed within APK into Dalvik code which is not human readable for that purpose batch in the next

step converts it into samli code which is byte level human readable code. Custom C++ tool was written to tag

features parsing whole bunch of smali files obtained from previous step. In the tool, a file is passed as

parameter having all features to be tagged with the code line number and count of that feature in a specific

smali byte code file. For categorization we wrote another custom tool in C++ to categorize the application,

we analyze the group of intents and manifest file for permissions to get most of the intents and features of the

app helping us to understand the type of the application whether it is a game, utility, image tool, sound

recorder etc. An isolated and unprivileged application has very limited functionality. Therefore, smartphone

platforms allow access to individual sensitive resources (e.g., address book,

In this section, it is explained the results of research and at the same time is given the

comprehensive discussion. Results can be presented in figures, graphs, tables and others that make the reader

understand easily [2], [5]. The discussion can be made in several sub-chapters. In order to categorize we have

maintained a list of major permissions by analyzing various applications before writing our tool. On the basis

of these permissions, we compare the permission presented in manifest file with our list, and also we have set

of rules that if an application has access to certain set of permissions then we can say that it may belongs to a

certain category as we mentioned in our Table III. If the application is from Google’s application market i.e.

play then we also take into consideration the category [23] assigned in the Google app store. In the last phase,

we use tagged code and categorized APK and point out the features malicious for the application and as a

result classifying whether the concerned APK should be considered as malicious or not.

We had another approach still to implement to improve the results, in which we will use machine

learning approach to further classify the detected malicious to pinpoint the category of malware. So two

level filtering will further decrease the false positives and give more accurate results. Basically the behavior

of smart phones is rather protected by the use permissions, also there are numerous permission-protected [20]

method calls that are not part of the public Android API, but are in classes that are resident on the phone, we

will then examines all the obtained smali files to find

5. FUTURE WORK

 We had another approach still to implement to improve the results, in which we will use machine

learning approach to further classify the detected malicious to pinpoint the category of malware. So two

level filtering will further decrease the false positives and give more accurate results. Basically the behavior

of smart phones is rather protected by the use permissions, also there are numerous permission-protected [20]

method calls that are not part of the public Android API, but are in classes that are resident on the phone, we

will then examines all the obtained smali files to find method calls used by application and each method call

is then compared to the list of all method calls that we have in our list of permission-protected Android API

calls to build an association. That association set is then compared to the permission set that is declared in the

application’s AndroidManifest.xml file, in this way we can determine whether the application has extra

permissions, lacks permissions, or has exactly the permission set that it requires based on its functionality.

Furthermore, to make more refine categorization of applications we aim to implement the scheme as

implemented in LACTA [14]. LACTA finds certain keywords and does code analysis of the application and

based on learning certain keywords and function names it categorizes the application. This will add two level

filter on categorization step of our algorithm making it fine-tuned and more effective.

Table 3: Categories

No

List of

Categories
Set of Some Permissions

1
Communicat

ion

android.permission.WRITE_SMS

android.permission.SEND_SMS

android.permission.CALL_PHONE

android.permission.READ_SMS

2
Games

android.permission.INTERNET

android.permission.READ_PHONE_ST

ATE

3 Social App

android.permission-group.LOCATION

android.permission.READ_CONTACTS

android.permission.READ_SOCIAL_ST

REAM

  ISSN: 2089-3299

IJINS Vol. 3, No. 1, February 2014 : 12 – 17

16

No

List of

Categories
Set of Some Permissions

1
Communicat

ion

android.permission.WRITE_SMS

android.permission.SEND_SMS

android.permission.CALL_PHONE

android.permission.READ_SMS

android.permission-group.ACCOUNTS

android.permission.INTERNET

4
Utility

android.permission.BATTERY_STATS

android.permission-

group.SYSTEM_TOOLS

android.permission.BLUETOOTH_AD

MIN

android.permission.KILL_BACKGROU

ND_PROCESSES

5
Education

android.permission-group.STORAGE

android.permission.READ_EXTERNAL

_STORAGE

6
Media

android.permission.CAMERA

android.permission.RECORD_AUDIO

android.permission.MODIFY_AUDIO_

SETTINGS

android.permission.INTERNET

7 Widgets

android.appwidget.action.APPWIDGET

_UPDATE

android.appwidget.action.APPWIDGET

_CONFIGURE

8
Travel &

Local

android.permission-group.LOCATION

android.permission.INTERNET

Table 3: Categories

6. CONCLUSION

We have devised a simple approach for automatic static analysis which is capable of source code

tagging with its prominent features and application categorization which helps in identifying irrelevant

features which should not be present in the app. It is quick and efficient and relies on intents present in the

source code. It can be made more efficient using machine learning techniques to train on apps first then

predicting the malicious code snippets but it has a tradeoff with performance. We have also proposed

additional filters in the future work that could be added to our approach to increase the viability and accuracy

of our system.

REFERENCES
[1] Juniper Networks: 2011 Mobile Threats Report (February 2012)

[2] Static analysis of Android programs É Payet, F Spoto - Automated Deduction–CADE-23, 2011 – Springer

[3] SCanDroid: Automated security certification of Android applications AP Fuchs, A Chaudhuri, JS Foster - Univ. of

Maryland, 2009 – Citeseer

[4] A Static Assurance Analysis of Android Applications KO Elish, DD Yao, BG Ryder, X Jiang - people.cs.vt.edu.

[5] APKTool for reverse engineering android applications https://code.google.com/p/android-apktool/

[6] Android permissions demystified AP Felt, E Chin, S Hanna, D Song, 2011 - dl.acm.org

[7] Androguard - Reverse engineering, Malware and goodware code.google.com/p/androguard/

[8] T.K. Ho, "Random Decision Forest," Proc. International Conference on Document Analysis and Recognition ,1995,

pp. 278-282

[9] Schmidt, A.D., Bye, R., Schmidt, H.G., Clausen, J., Kiraz, O., Yuksel, K.A.,Camtepe, S.A., Albayrak, S.: Static

analysis of executables for collaborative malware detection on android. In: Proceedings of IEEE International

Conference on Communications.(2009).

[10] Smali code https://code.google.com/p/smali/

IJINS ISSN: 2089-3299 

Automatic Feature Extraction, Categorization and Detection of Malicious (Muhammad Zuhair Qadir)

17

[11] DalvikOpcodes http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html

[12] I. Burguera, U.Z., Nadijm-Tehrani, S.: Crowdroid: Behavior- Based Malware Detection System for Android. In:

SPSM’11, ACM(October 2011)

[13] Permission-Based Android Malware Detection

[14] LACTA: An Enhanced Automatic Software Categorization on the Native Code of Android Applications

[15] Google Inc. The Android Developer's Guide. http://developer.android.com/guide/, 2011.

[16] The Android Open Source Project. Bytecode for the Dalvik VM. http://source.android.com/tech/dalvik/dalvik-

bytecode.html, 2007.

[17] Android Developers Reference. http://developer.android.com/reference/.

[18] The dex2jarproject.Available: http://code.google.com/p/dex2jar/

[19] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss: Andromaly: a behavioral malware detection framework

for android devices. Journal of Intelligent Information Systems 38(1) (January 2011) 161-190

[20] Analysis of Android Applications' Permissions R Johnson, Z Wang, C Gagnon… - Software Security and …, 2012 -

ieeexplore.ieee.org

[21] A framework for static detection of privacy leaks in android applications C Mann, A Starostin - Proceedings of the

27th Annual ACM Symposium …, 2012 - dl.acm.org

[22] A Malicious Application Detection Framework using Automatic Feature Extraction Tool on Android Market D

Kim, J Kim, S Kim - psrcentre.org 2012

[23] On the automatic categorization of android applications B Sanz, I Santos, C Laorden… - … (CCNC), 2012 IEEE,

2012 - ieeexplore.ieee.org

[24] Exploiting common Intent vulnerabilities in Android Applications

[25] A System Call-Centric Analysis and Stimulation Technique to Automatically Reconstruct Android Malware

Behaviors A Reina, A Fattori, L Cavallaro - 2013 - security.

BIOGRAPHY OF AUTHORS

Muhammad Zuhair Qadir received his Bachelors in Computer Engineering from University of

Engineering and Technology, Lahore in year 2010. He received his Masters in Computer

Sciences in the year 2013 from Lahore University of Managements Sciences (LUMS). Currently,

he is working as a Lecturer at University of Lahore for past 6 months. Apart from that he also

has 2 years industry experience in one of the largest software houses of Pakistan. His research

interests includes Network Security, Computer Vision and Algorithms.

Atif Nisar Jilani received his Bachelors in Computer Sciences from National University of

Emerging Sciences (NU-Islamabad) in the year 2011 after that he continued his education and

received his Masters in Computer Sciences from Lahore University of Management Sciences in

2013. His research interests includes Network Security and Web Services

Hassam Ullah Sheikh received his B.Sc (Computer Engineering) degree from University of

Engineering and Technology in the year 2012. He has completed his Masters degree in

Advanced Computer Science with specialization in aritificial intelligence and parallel

computing. His research interest is in machine learning, natural language processing, computer

vision, humanoid robotics, parallel and distributed processing.

