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 Since Android has become a popular software platform for mobile devices 

recently; they offer almost the same functionality as personal computers. 

Malwares have also become a big concern. As the number of new Android 

applications tends to be rapidly increased in the near future, there is a need 

for automatic malware detection quickly and efficiently. In this paper, we 

define a simple static analysis approach to first extract the features of the 

android application based on intents and categories the application into a 

known major category and later on mapping it with the permissions 

requested by the application and also comparing it with the most obvious 

intents of category.  As a result, getting to know which apps are using 

features which they are not supposed to use or they do not need. 
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1. INTRODUCTION  

Android has seen a tremendous growth since its introduction in the market. The numbers of 

applications are growing with extraordinary volume. It has a wide of variety of applications targeting various 

needs and use cases. Since its launch the privilege to the developers who can upload any application draws 

attention to the malicious developers whose intents are to deceive and take advantage of this privilege and 

without much inspection it is getting hard to investigate a valid and benign application which can filter out 

the malicious application from the pool of millions of apps. Malicious code is being injected into mobile 

applications and threatens the privacy of user’s personal data and device integrity also it can lead to breaches 

of user data and violate application security policies. In 2011, malware attacks are increased by 155 percent 

across all platforms [1] in particular, Android is the platform with the highest malware growth rate by the end 

of 2011. 

Static detection techniques (also called signature matching) have high detection rates and consume 

fewer resources [8]. Static analysis of these applications can result in faster detection of malicious apps and 

as it involves automatic application code lookup and detecting required content without running it or testing 

it. Static analysis of Android applications is important because quality and reliability are keys to success on 

the Android market [2]. Because of diversity of applications available in different markets, there is a need to 

categories the application first. We perform static analysis on Android applications in order to determine the 

feature set of the application based on its functionality. Our program also looks for the category in which the 

app should fall. 
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2. RESEARCH METHOD  

There is lot of study on dynamic and static approaches for android malware detection analysis. 

Static being faster as it does not require runtime cost and exploiting the code on runtime.  Confidentiality and 

authorization are two key goals which are addressed in program analysis techniques. SCanDroid extracts 

security specifications from the manifest of an app and checks whether data flows through the app are 

consistent with the stated specifications [3]. Tabe1 [4] gives the crisp comparison of the tools being made to 

address various malicious code detection and analysis with various techniques. They are various tools written 

on static analysis among them the most famous one used in AndroGuard [5] it’s an open source project to 

statically detect Android malwares, it basically reverse engineer APK from byte code (assembly source code) 

to readable format and afterward it visualizes your application with Gephi which is a control flow graph of 

the method. Check if an android application is present in a database or not, it maintains the list of pre-defined 

malware's. Also it compares the control flow graph of both the application to check the similarity between 

that malware and the given application. 

There are various papers which works on the permission analysis approach, one [7] of them detects 

whether an app is over privileged or underprivileged/ This can be very useful as developers develop apps and 

without much concern adds more permissions to the app whereas the code itself requires very less number of 

permissions comparatively. 
Table1: Comparison 

 

Crowdroid [12] is a machine learning-based framework that recognizes Trojan-like malware on 

Android smartphones, by analyzing the number of times each system call has been used by an application 

during the execution of an action that requires user interaction. A genuine application differs from its 

trojanized version, since it issues different types and a different number of system calls. Crowdroid builds a 

vector of m features (the Android system calls). Another technique [19] which monitors both the smartphone 

and user’s behaviors by observing that continuously monitors various features and events obtained from the 

mobile device from sensors activities to CPU usage. And then apply various algorithms like mining 

techniques to classify the collected data as normal or abnormal. The main assumption in this techniques that 

system metrics such as CPU consumption, number of sent packets through the Wi-Fi, number of running 

processes, battery level etc. can be employed for detection of previously un-encountered malware by 

examining similarities with patterns of system metrics induced by known malware. 

Another paper [22] proposed a malicious application detection framework in which it uses both 

static and dynamic detection technique. Uses an automatic feature extraction tool on android market built in 

Solution Aim Flow Analysis Classification Policy Evaluation Scale 

SCanDroid 

Enforcement of 

confidentiality, 

integrity 

Data, string Constraints on permission logics N/A 

CHEX 

Discovery of 

exposed component 

API 

Data 
Component exported to public 

without restrictions 
5,486 apps 

RiskRanker 

Detection of 

abnormal 

code/behavior 

patterns 

Data, control 
Multiple malware behavior 

signatures 
118, 318 apps 

Woodpecker 
Firmware 

permission 
Data, control N/A 

8 phone images, 

13 permissions 

AndroidLeaks Confidentiality Data Sensitive data used by risky APIs 24,350 apps 

SCANDAL Confidentiality Data Sensitive data used by risky APIs 
90 apps & 8 

malware 

Stowaway 
Detection of 

overprivileged apps 

String, Intent 

control flow 

Compare required and requested 

permissions 
940 apps 

ComDroid 

Detection of apps 

communication 

vulnerabilities 

Intent control 

flow 

Implicit Intent with weak or no 

permission 
100 apps 

PiOS Confidentiality Data Sensitive data used by risky APIs 1,407 apps 

UID 
Identification of 

unauthorized calls 

Data, event 

specific control 

Trigger-operation dependence for 

privileged function calls 

708 apps & 482 

malware 
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Javascript based on permissions, the framework performs a static detection based on methods of System API 

calls and performs dynamic detection using machine learning on android market. 

Basically it does static analysis on android application output of the readelf tool which extracts their system 

calls and then they are compared with the pre-defined list of malicious applications from benign ones based 

on the combinations of system calls used in the executable [8].  

 

 

3. APPROACH 

  We propose and implemented an approach to detect malicious applications statically. Android 

applications can interact with other applications, and with the system, through a well-defined API. A number 

of components can make up an application. In particular, Android defines activities, services, content 

providers, and broadcast receivers. Activities, services, and broadcast receivers are activated by intents, i.e., 

asynchronous messages exchanged between individual components to request an action. Activity and service 

intents specify actions to be performed. Conversely, broadcast receiver intents define the received event and 

are delivered to the interested broadcast receivers. Our algorithm consists of three main steps 

 

Step I: We get the set of APKs to analyze and transform to decompressed files and 

then into byte code using APKTool [6]. 

Step II: Then we extract features of the application present in the byte code.  

Step III: Categorize the application to known major categories.  

Step IV: Relate features to category and point out features which are not needed for 

the application and can be considered as malicious. 

 

In this four step process, APKTool does the conversion part to get the readable format code of the 

original APKs. While in the second step, feature extraction or more appropriately, code tagging is done 

through our custom tool written in C++ which parse the code and gets all the intents of the code and tags it 

with the detected features which will be used later. Intents provide an easy way to detect what an application 

actually trying to do and how it is utilizing to the resources of the device. This step is crucial and essential 

part of the algorithm making an intelligent system to separate benign apps and malicious apps. Our tool is 

flexible as takes a file full of intents which should be extracted and tagged in the code. Making a useful 

plugin for various alterations of this algorithm and also targeting specific type of malicious codes which 

exploits certain features only. 

Table 2. Intents targeted 

 

No List of Some Targeted Intents 

1 android.hardware.Camera.PictureCallback 

 

2 
android.telephony.SmsMessage 

 

3 
android.telephony.SmsManager 

 

4 
android.telephony.CellLocation 

 

5 
android.media.AudioRecord 

 

6 android.location.LocationManager 

 

Categorization can be done on the basis of group of intents and manifest file. Clustering can tell 

specific APK falls in which android app category. We made another tool in C++ for to achieve this 

categorization.  

 

4. IMPLEMENTATION 

We used APK tools for extracting code out of APK into samli code [10] which is actually sort of 

byte code along with Dalvik Opcodes [11] and having its own syntax. APK tools is a very powerful tool 

available at android’s developer website for various apk reverse engineering tasks. We wrote a batch script 

which takes the application name , and after wards with the help of APK tool, it extracts all the folder that are 
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compressed within APK into Dalvik code which is not human readable  for that purpose batch in the next 

step converts it into samli code which is byte level human readable code. Custom C++ tool was written to tag 

features parsing whole bunch of smali files obtained from previous step. In the tool, a file is passed as 

parameter having all features to be tagged with the code line number and count of that feature in a specific 

smali byte code file. For categorization we wrote another custom tool in C++ to categorize the application, 

we analyze the group of intents and manifest file for permissions to get most of the intents and features of the 

app helping us to understand the type of the application whether it is a game, utility, image tool, sound 

recorder etc. An isolated and unprivileged application has very limited functionality. Therefore, smartphone 

platforms allow access to individual sensitive resources (e.g., address book,  

In this section, it is explained the results of research and at the same time is given the 

comprehensive discussion. Results can be presented in figures, graphs, tables and others that make the reader 

understand easily [2], [5]. The discussion can be made in several sub-chapters. In order to categorize we have 

maintained a list of major permissions by analyzing various applications before writing our tool. On the basis 

of these permissions, we compare the permission presented in manifest file with our list, and also we have set 

of rules that if an application has access to certain set of permissions then we can say that it may belongs to a 

certain category as we mentioned in our Table III. If the application is from Google’s application market i.e. 

play then we also take into consideration the category [23] assigned in the Google app store. In the last phase, 

we use tagged code and categorized APK and point out the features malicious for the application and as a 

result classifying whether the concerned APK should be considered as malicious or not.  

We had another approach still to implement to improve the results, in which we will use machine 

learning approach to further classify the detected malicious to pinpoint the category of malware.  So two 

level filtering will further decrease the false positives and give more accurate results. Basically the behavior 

of smart phones is rather protected by the use permissions, also there are numerous permission-protected [20] 

method calls that are not part of the public Android API, but are in classes that are resident on the phone, we 

will then examines all the obtained smali files to find 

 

 

5. FUTURE WORK 

  We had another approach still to implement to improve the results, in which we will use machine 

learning approach to further classify the detected malicious to pinpoint the category of malware.  So two 

level filtering will further decrease the false positives and give more accurate results. Basically the behavior 

of smart phones is rather protected by the use permissions, also there are numerous permission-protected [20] 

method calls that are not part of the public Android API, but are in classes that are resident on the phone, we 

will then examines all the obtained smali files to find method calls used by application and each method call 

is then compared to the list of all method calls that we have in our list of permission-protected Android API 

calls to build an association. That association set is then compared to the permission set that is declared in the 

application’s AndroidManifest.xml file, in this way we can determine whether the application has extra 

permissions, lacks permissions, or has exactly the permission set that it requires based on its functionality. 

Furthermore, to make more refine categorization of applications we aim to implement the scheme as 

implemented in LACTA [14]. LACTA finds certain keywords and does code analysis of the application and 

based on learning certain keywords and function names it categorizes the application. This will add two level 

filter on categorization step of our algorithm making it fine-tuned and more effective. 

 

Table 3: Categories 

  

                             

No 

 

List of 

Categories 
Set of Some Permissions 

1 
Communicat

ion 

 

android.permission.WRITE_SMS  

android.permission.SEND_SMS 

android.permission.CALL_PHONE 

android.permission.READ_SMS 

2 
Games 

 

android.permission.INTERNET 

android.permission.READ_PHONE_ST

ATE 

3 Social App 

android.permission-group.LOCATION 

android.permission.READ_CONTACTS 

android.permission.READ_SOCIAL_ST

REAM 



                ISSN: 2089-3299 

IJINS  Vol. 3, No. 1,  February 2014 :  12 – 17 

16 

                             

No 

 

List of 

Categories 
Set of Some Permissions 

1 
Communicat

ion 

 

android.permission.WRITE_SMS  

android.permission.SEND_SMS 

android.permission.CALL_PHONE 

android.permission.READ_SMS 

android.permission-group.ACCOUNTS 

android.permission.INTERNET 

4 
Utility 

 

android.permission.BATTERY_STATS 

android.permission-

group.SYSTEM_TOOLS  

android.permission.BLUETOOTH_AD

MIN 

android.permission.KILL_BACKGROU

ND_PROCESSES 

5 
Education 

 

android.permission-group.STORAGE 

android.permission.READ_EXTERNAL

_STORAGE 

6 
Media 

 

android.permission.CAMERA  

android.permission.RECORD_AUDIO  

android.permission.MODIFY_AUDIO_

SETTINGS 

android.permission.INTERNET 

7 Widgets 

android.appwidget.action.APPWIDGET

_UPDATE 

android.appwidget.action.APPWIDGET

_CONFIGURE 

8 
Travel & 

Local 

android.permission-group.LOCATION 

android.permission.INTERNET 

    

Table 3: Categories 

 

6. CONCLUSION 

We have devised a simple approach for automatic static analysis which is capable of source code 

tagging with its prominent features and application categorization which helps in identifying irrelevant 

features which should not be present in the app. It is quick and efficient and relies on intents present in the 

source code. It can be made more efficient using machine learning techniques to train on apps first then 

predicting the malicious code snippets but it has a tradeoff with performance. We have also proposed 

additional filters in the future work that could be added to our approach to increase the viability and accuracy 

of our system. 
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