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We first introduce a new concept of multiplicative learning with 

errors (MLWE), which is multiplicative version of the learning with 

errors (LWE). Then we reduce that the hardness of the search version 

for MLWE to its decisional version under the condition of modulo of 

a product of sufficiently large smoothing prime factors. Next we 

construct the MLWE-based private-key and public-key encryption 

schemes, and prove that the security of our schemes is based on the 

worst-case hardness assumption of MLWE. Finally, we discuss the 

LWE on additive group to the LWE on general abelian group and 

approximate lattice problem on abelian group. 
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1.  INTRODUCTION 

After the concept of public-key cryptosystem is presented, very few convincingly secure public-key 

schemes have been discovered despite considerable research efforts. Now standard cryptographic 

assumptions are mainly based on the hardness of computational problems such as integer factoring problem 

[1-2], discrete logarithm problem [3-4], elliptic curve problem [5-6] and lattice problem [7]. Recently, Regev 

[8] extended learning parity with noise (LPN) to learning with errors (LWE) over larger modulo, and 

described a different class of cryptosystem based on LWE. In the search version of LWE, the goal is to solve 

for an unknown vector s on n

pZ  which is often chosen uniformly at random, given any desired m=poly(n) 

independent „noisy random inner products‟ , , ) n

i i i i p pa b a s e Z Z    ( ,  i m , where 
n

i pa Z  

and each ei the error distribution X. In the decisional version, the goal is merely to distinguish between noisy 

inner products as described above and uniformly random samples from n

p pZ Z . Moreover, Regev 

constructed an elementary reduction from the search version to decision version for the LWE problem when 

prime  p=poly(n). 

The multiplicative learning with error (MLWE) problem is a multiplicative version of LWE. It is 

parameterized by a dimension n, a modulus p, and an error distribution X over 
pZ , where X is often 

considered as a Gaussian-like distribution that is relatively concentrated around 0. In the search version of 

MLWE, the goal is to solve for an unknown vector s on some subset of n

pZ  which is often chosen uniformly 

at random, given any desired m=poly(n) independent „noisy random exponential inner products‟ 

, * *1
( , ( ^ ) j

n sr n

i i i i i j i p pj
a b a s e a e Z Z


      , [ ]i m , where *

n

i pa Z , ei the error distribution X. In the 
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decisional version, the goal is to distinguish between noisy random exponential inner products and uniformly 

random samples from 
* *

n

p pZ Z .  

Related Work. After Regev introduces LWE and construct an elementary public key cryptosystem, 

many works (e.g. [9-19]) have focused on how improve and design various cryptographic primitive under the 

hardness of LWE.  

Our work is inspired by Ref. [8]. Regev [8] defines the additive learning with error, whereas we 

generalize LWE on the additive group to the MLWE on the multiplicative group. Moreover, we also extend 

the work of [18] from exponential error noise to directly multiplicative noise error in the public key and 

ciphertext. Namely, the problem defined in [18] is equivalent to the LWE problem if there is an oracle 

solving the discrete logarithm problem, whereas MLWE we here introduce is not equivalent the LWE 

problem even if supposing the discrete logarithm oracle. We show the difference between them in the 

following Remark 2.1. Furthermore, we construct respectively public key and private key cryptosystems 

based on MLWE and discuss how to generalize LWE on additive group to LWE on general abelian group. 

To our knowledge, the leaning with error problem on the abelian group does not obtain the attention for 

researchers. We believe this contribution is of independently interest. 

Our Results. Our main contribution is to introduce the concept of MLWE and prove that the 

hardness of the search version of MLWE is equal to its decisional version. Our second contribution is to 

construct MLWE-based private-key and public-key encryption schemes, whose securities are based on the 

worst-case hardness assumption of MLWE. 

Organization. We describe notations and definitions in Section 2; we prove the hardness of MLWE 

in Section 3; we construct MLWE-based public key and private key cryptosystems in Section 4; and we 

extend LWE to the LWE on the abelian group and approximate lattice problem on abelian group in Section 5; 

we finally conclude this paper and give open problem in Section 6. 

 

2.  Preliminaries  

We denote   {1,2,..., }p p ,   { 1, 2,..., }p p     , { / 2 ,..., ( 1) / 2 }pZ p p        
, 

* { | gcd( , ) 1, }p pZ a a p and a Z   .  We denote column vectors
 

, nx y Z , 1( ,..., )c c c

nx x x , 

1/ ( / ,..., / )nx c x c x c , 1 1( ,..., )n nx y x y x y    , and 
1 1 1

1 1* ( ,..., )n nx y x y x y     , where 

the c  is a non-zero constant. 

We assume , m n

pX Y Z  , )(^ , ji

Tr aYX   with ,

, ,1

j k
n y

i j i kk
a x


 , )(^ , ji

Tl aYX   with ,

, ,1

i k
n x

i j j kk
a y


 , 

)(* , jiaYX   with , , ,i j i j i ja x y , 
1

,( )i jY a   with 
1

, ,i j i ja y , ,( )i jkX c a   with , ,i j i ja kx c  , 

,( )X

i jg a  with 
,

,
i jx

i ja g . 

We denote  ( )p  the Carmichael‟s  -function for p , ( )p  Euler‟s  -function for p . 

Definition 2.1 (Learning With Error LWEp,s,X [8]). Suppose 1n  , p  be a positive integer and 

consider a list of equations with errors , (mod )i i ia s e b p    , [ ]i m , ( )m poly n  where 

ia , s  are chosen independently from the uniform distribution on n

pZ , ie  is independently drawn from the 

error distribution X and 
i pb Z .  Let LWEp,s,X denote the problem of recovering s  from such equations, 

Ap,s,X the probability distribution generated by LWEp,s,X. 

Definition 2.2 (Multiplicative Learning With Error MLWEp,s,X). Assume n , m , p  be positive 

integers, ][, miai   are chosen independently from the uniform distribution on *

n

pZ , s  is chosen 

independently from the uniform distribution on ( )

n

pZ , ( ^ ) modr

i i ib a s e p  , where each ie  is 

independently drawn from the error distribution X on pZ . Let MLWEp,s,X denote the problem of recovering s 

from such equations with errors, MAp,s,X the probability distribution generated by MLWEp,s,X. 

Remark 2.1. Notice that MLWEp,s,X is not equivalent to LWEp,s,X. For example, assume 29p  , 

, , ,A s e b  be an input instance for MLWEp,s,X, 1 1 1, ,A e b  be the discrete logarithm 2log  of , ,A e b . It is easy 

to see that the error distribution 1e  on ( )pZ  is different from the one of e  on pZ . 
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3.  Hardness of MLWE 
In this section, we show the equivalence between the decisional version and the search version for 

MLWE when p is a product of sufficiently large smoothing prime factors. 

Theorem 3.1 Let 1n   be an integer, 1... tp p p  for distinct primes ( )ip poly n . There is a 

probabilistic polynomial time reduction from solving the search MLWEp,s,X problem with overwhelming 

probability to distinguishing MAp,s,X,e from * *( )n

p pU Z Z  for arbitrary ( )

n

ps Z  with overwhelming 

probability. 

Proof: Assume D  to be an efficient distinguisher that distinguishes MAp,s,X from U for modulus 

1p . Given input samples ( , ^ ), [ ]r

i i i ia b a s e i m    generated by the distribution MAp,s,X. The goal is to 

solve s  from ( , )i ia b . Due to 1 ( )p poly n , we can compute the order of ,i ja . Without loss of 

generality, let the order of ,i ja  be 1 1p  .  First, choose m  random 
1 1i pr Z  , and for any 

1 1pk Z  , 

factor 1mod( 1)k xy p   such that 1, 1x y   and 1gcd( , 1) 1y p    except with 

10mod( 1)k p  . Then, compute 
'

,1 ,1
ix r

i ia a


 , 
'

, , , 1i j i ja a j  , 
'

,1
ir y

i i ib b a  . Finally, call D  with 

the parameters 
' '( , )i ia b . If 

' '(( , )) 1i iD a b  , then 1s k , otherwise 1s k . If 1s xy , then 

1 ( )i is r y x r y   , namely 
1

' '

, ,( , )i i p s Xa b MA . If 1s xy , the probability that 

1 1( ) / ( ) ( ) / ( )i i j js r y x r s r y x r      is at most 1 11 1/ (6ln ln( 1)) 1/ ( 1)p p    . When 

1 1( )( ) 0mod( 1)i js xy r r p    , 1s xy , and i jr r , the probability of 1gcd( , 1) 1i jr r p    is 

at most 11 1/ (6ln ln( 1))p  . Moreover, the probability of i jr r  is 11/ ( 1)p  . So, the probability 

that 1 1( ) / ( ) ( ) / ( )i i j js r y x r s r y x r      and 1s xy  for all ( , )i jr r  is at most 

1

1 1(1 1/ (6ln ln( 1)) 1/ ( 1))mp p      and negligible. In other words, if 1s xy , there does not exist 

an integer z  such that 1 1( ) / ( )mod( 1)i iz s r y x r p     for all i  with overwhelming probability. In 

this case, 
'

ib  is uniformly random by applying the fact the order of ,1ia  is 1 1p   and 1gcd( , 1) 1y p   , 

namely, 
1

'

1( )i i pr r y U Z   . Hence, we can decide whether 1k s  by using D and 

1 11 1= ( )s p poly n   . If all 11 1k p    is not equal to 1s , then 1 10mod( 1)s p  , for the input 

samples are from the distribution 
1 , ,p s XMA . So, we can add a random number to 1s , then decide 1s . Finding 

all other coordinates is similar for modulus 1p  and 2 ,..., tp p . Finally, we recover ( )

n

ps Z  via the 

Chinese remainder theorem.■ 

Lemma 3.1 (Decisional Average-case to Worst-case). If there is a distinguisher that distinguishes 

MAp,s,X from U for a non-negligible fraction of all possible s, then there is an efficient algorithm that for all s 

accepts with probability exponentially close to 1 on inputs from MAp,s,X and rejects with probability 

exponentially close to 1 on inputs from U. 
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Lemma 3.2 (Search Average-case to Worst-case). If there exists an efficient algorithm that solves 

MLWEp,s,X for a non-negligible fraction of all possible s, then there exists an efficient algorithm that for all s 

solves MLWEp,s,X with probability exponentially close to 1. 

Proof: The proofs of Lemma 3.1, 3.2 follow the adaptive ones of Lemma 4.1, 4.2 of Ref. [8]. ■ 

 

4.  Cryptosystems 

In this section, we present a private-key encryption scheme and a public-key encryption scheme 

based on the decisional MLWE problem, respectively. By using Theorem 3.1, we know their securities 

depend on the hardness of the MLWE problem. 

 

4.1 Private-Key Encryption Scheme 

Let n  be the security parameter. 
cm n  where 0c   is a constant, ( )p poly n  is a prime, 

q p 
 

. 

Key Generation Algorithm: On input 1
n
, choose a uniformly random secret key 

n

ps Z . 

Encryption Algorithm: On input a secret key 
n

ps Z  and a message {0,1}my . Choose 

*

m n

R pA Z   uniformly at random and an error vector    ( 1 ) 1Re q q     where [ 1]ie q  , output the 

ciphertext ( ,( ^ ) mod )r yc A A s e q p   . 

Decryption Algorithm: On input a secret key 
n

ps Z  and a ciphertext ( , )c A b . The 

decryption algorithm computes 
1( ^ ) modrx b A s p   and it deciphers as follows: if 

( 1) 1iq x q     , then it deciphers 0iy  , otherwise it deciphers 1iy  . 

Correctness: The decryption algorithm computes 
1( ^ )r yx b A s e q    . Thus, if 0iy  , 

then ( 1) 1iq x q     . If 1iy  , ( )modi iq x e q p p q     . We here use the absolutely least 

residue for modulo p . 

Efficiency: The size of ciphertext ( , )c A b  has lg lgmn p m p  bits. The expansion of 

ciphertext is ( lg lg ) / lg lgmn p m p m n p p    for each message bit. 

Proposition 3.1 (Security). The symmetric encryption scheme is semantically secure assuming that 

the MLWEp,s,U problem is hard. 

 

4.2 Public-key Encryption Scheme 

Let n  be the security parameter. 2m n ,
4 lg 12

1... 2 n n n

tp p p    such that ( )ip poly n  are 

distinct primes, ( )q p .  

Key Generation: Choose uniformly at random
 *

m n

pA  , 
m n

qS Z  , [ ] -[ ]

m m m m

s sE U U  , where 

8s n 
 

. Output the secret key )(Ssk  , and the public key ( , )pk A B  where 

( ^ ) modr TB A S E p  . 

Encryption: Given the public key ),( BApk   and a message 
my }1,0{ . Choose uniformly at 

random 
mx }1,0{  and output the ciphertext 1 2( , )c c c , where 1 ( ^ )modlc x A p ,

2 ( ^ ) modlc x B M p  , 

 1 2( , ,..., )myy y
M diag q q q , and 

1/2q p     

Decryption: Given the secret key )(Ssk   and a ciphertext 1 2( , )c c c . Compute 

1

2 1( ^ )r Tw c c S   , and output 0iy   if | |iw q  modulo p  and 1iy   otherwise. 

Correctness. Since 1 21

2 1 ,1 ,2 ,( ^ ) ( , ,..., )modi i m ix x y xy yr T

i i i mw c c S q e q e q e p      , 
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2 lg 6

,| | ( 8 ) 2ix n n n

i je n n q     ,  j m . Thus, if 0iy  , then | |iw q , if 1iy  , then 

| |iw q .  

Efficiency. The size of the public key ),( BApk   has 
2 3( lg ) ( lg )O m p O n n  bits. The size 

of the secret key )(Ssk   is 
2( lg ) ( lg )O mn p O n n  bits. The size of the ciphertext 1 2( , )c c c  is 

2( lg ) ( lg )O m p O n n  bits. The expansion of ciphertext is 
2( lg / ) ( lg )O n n n O n n  for each 

message bit. 

Proposition 3.2 (Security). The public key encryption scheme is secure assuming that the 

MLWEp,s,U problem is hard when p is a product of sufficiently large smoothing prime factors. 

 

5.  Extension 

5.1 LWE on Abelian Group 

The LWE problem is the additive group defined on n

pZ , the MLWE problem is the multiplicative 

group defined on 
*

n

pZ . So, it is not difficult to generalize the LWE on additive group to the LWE on general 

abelian group. Assume G  is an abelian group,   operator of G . The LWE problem on G  is defined as 

follows: given any desired m=poly(n) independent „noisy random inner products‟ 

,1
, )j

n s n

i i i j ij
a b a e G G


   ( ,  i m , where n

ia G  and each ei the error distribution X on G , 

, , , ,...js

i j i j i j i ja a a a   , find s . In the search version, the goal is to solve for an unknown vector s on 

nG  which is often chosen uniformly at random. In the decisional version, the goal is merely to distinguish 

between noisy inner products above and uniformly random samples from nG G . It is easy to verify the 

LWE problem on the abelian group can be used to construct the public key cryptosystem if there is a norm 

for the group elements in G . So, we believe it is very interesting to study the hardness of LWE on the 

general abelian group. 

 

5.2 Approximate Lattice Problem on Abelian Group 

We can further generalize LWE into an approximate lattice problem on general abelian group. 

Without loss of generality, we assume that G  is an abelian group,   operator of G . The approximate lattice 

problem on G  is defined as follows: given any m=poly(n) independent „noisy random inner products‟ 

( ^ ) n

i i ib s A e G   ,  i m , where n

ia G  and each ei the error distribution X on G , 

,

,^ i js

i i js A A , 
, , , ,...js

i j i j i j i ja a a a   , find s . In the search version, the goal is to solve for an 

unknown vector s on 
nG  which is often chosen uniformly at random. In the decisional version, the goal is 

merely to distinguish between noisy inner products above and uniformly random samples from nG G . 

Similarly, the approximate lattice problem on the abelian group can be used to construct the public key 

cryptosystem if there is a norm for the group elements in G . 

 

6.  Conclusion and Open Problem  

We introduce the concept of MLWE and construct the public key and private key schemes based on 

MLWE, whose securities are based on the worst-case hardness assumption of MLWE. Furthermore, we also 

discuss the generalization of LWE to LWE over the Abelian group. An interesting open problem is to 

reduce the hardness of solving MLWE to the hardness of the general lattice problem. 
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