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The Quantum Cryptography BB84 protocol is considered to be the 

most widely used in Quantum Key Distribution (QKD) to create 

secure keys that are shared between communicating parties. Major 

phases in this protocol are the correction of discrepancies between 

keys of sender and receiver as well as the privacy amplification phase 

where two communicating parties distill highly secret shared key 

from a larger body of a shared key, which is only partially secret. In 

the present paper, we propose enhancing the performance of the 

privacy amplification phase by introducing message digests (MD) 

hash functions combined with truly random functions.  The resulting 

Hash-Mod and Hash-Div functions are used to compress reconciled 

keys resulting from the error correction phase. Experiments were 

conducted using three different simulators to assess the performance 

of these combined functions using entropy and information measures. 

The newly introduced functions were tested against the plain versions 

of Mod and Div functions as well as the permutated Mod and Div 

functions using hash function signature size (MD4-128). The results 

supported the use of Hash-Mod and Hash-Div over the plain versions 

as well as their permuted versions in enhancing the entropy behavior 

and minimizing information content within reconciled key strings. 
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1. INTRODUCTION  

It is now evident that when quantum computers become operational, public key cryptography would 

no longer be secure. Quantum Cryptography (QC) offered a solution to this problem and became an 

interesting issue in cryptography during the past few years. Being a combination of ideas in quantum physics 

and information theory, QC is based on the Heisenberg Uncertainty Principle which states that “measurements 

of unknown quantum states can not be accomplished without disturbance” [1]. This means eavesdropping on 

the quantum communication channel causes unavoidable disturbance that can be recognized by the 

communicating channel legitimate users. QC is not used to encrypt a message itself, yet it is rather used to 

generate and distribute random secret keys between sender and receiver. The key created is used with 

symmetric cryptosystems to encrypt the messages between sender and receiver. (QC) is a combined 

technology of quantum mechanical phenomena and classic cryptographic schemes with the target of 

generating a secret key, or extending a short key, between two communicating parties [2]. 

The scheme for quantum key distribution is composed of the following three steps [1]: 

1. Key Creation between two communicating parties known as Alice and Bob using one of several 

techniques such as polarization methods or phase methods. 

2. Error Correction for the errors and discrepancies between keys of Alice and Bob. 
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3. Privacy Amplification which is concerned with reduction of eavesdropper’s information that might 

be gained during the initial creation of the key. 

 

A realization of such scheme is the BB84 which is considered to be the most widely used in 

Quantum Key Distribution (QKD) or Quantum Key Exchange systems. In the presented paper, we proposed 

to enhance the Privacy Amplification phase by introducing message digest (MD) hash functions combined 

with truly random functions to compress reconciled keys resulting from the BB84 error correction phase. The 

use of such combined functions is expected to enhance the entropy behavior and minimize the information 

content in the reconciled key strings. 

The paper is organized as follows. The BB84 protocol is discussed in section (2), where key creation, 

error correction and privacy amplification algorithms are explained. Section (3) discusses in details the basic 

privacy amplification model. The proposed combined function strategy and the privacy amplification 

functions are presented in section (4). Section (5) explains the three simulators of privacy amplification. 

Section (6) shows the proposed three experimental comparisons of simulators analysis. Finally, section (7) 

concludes the paper outcomes. 

 

2. The BB84 Protocol 

The (BB84) is details a procedure for Quantum Key Distribution (QKD). This protocol creates a 

strongly secured key which is shared between two communicating parties over a quantum channel. In 1984, 

Charles Bennett and Gilles Brassard had proposed the (BB84) protocol using four polarization states that 

built a (QKD) system. The (BB84) is composed of: key creation, error correction or reconciliation and 

privacy amplification phases. [3]  

 

2.1  Key Creation  

The scheme shown in Figure (1) describes the key creation steps between Alice and Bob until both 

agree on a common shared binary string in order to proceed with second phase of BB84 protocol. The Key 

creation steps of (BB84) protocol are as follows [3]: 

1. (Alice) sends a random sequence of photons polarized horizontal ( ), vertical ( ), right-circular  

( ) and left-circular ( ).  

2. (Bob) measures photons’ polarization in random sequence of bases, rectilinear ( ) and circular ( ). 

3. Results of (Bob’s) measurements as some photons may not be received at all. 

4. (Bob) tells (Alice) which basis he used for each photon he received. 

5. (Alice) tells him which bases were correct. 

6. (Alice) and (Bob) keep only the data from these correctly-measured photons, discarding all the rest.  

7. This data is interpreted as a binary sequence according to the coding scheme:  

[  =  = 0 ] and [  = = 1 ].  

The previous steps results are referenced as the quantum transmission or the raw quantum transmission to 

ensure that it was recently gained in the process as shown in Figure (1) of QKD protocol [3].  
 

 
Figure (1): Basic Quantum Key Distribution (QKD) Protocol [3] 

 

2.2  Error Correction  

As long as the quantum transmission is done with very dim light pulses utilized in place of single 

photons, (Alice) and (Bob’s) first job is to switch public messages allowing them to reconcile the differences 

between (Alice) and (Bob’s) data. It is assumed that (Eve) spy on all transmitted public messages between 

(Bob) and (Alice), such exchange should be carried out in a manner that shows as little possible information 
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on this data, while (Eve) is incapable of damaging these public messages contents. An efficient manner for 

(Alice) and (Bob) to execute reconciliation is first to consent an arbitrary permutation of the bit positions in 

their strings to randomize the error locations then partition the permuted strings into blocks of size (k) where 

single blocks are only supposed to have no more than one error. The optimal block size is assumed to be a 

function of expected error rate [3]. Concerning that block, (Alice) and (Bob) compare the blocks’ parity. 

Matching parity blocks are cautiously approved correct, yet those of harsh parity are subject to a bisective 

search, disclosing [log (k)] further parities of sub-blocks till error is found and corrected. If initial block size 

was far too large or too small as of “a bad a priori guess of the error rate” [3], the procedure could be tried 

again using an appropriate block size [3].  

In order to secure information leakage to (Eve) during the reconciliation process, (Alice) and (Bob) 

consent to reject the last bit of each block or sub-block which parity they just have disclosed. In spite of using 

proper block size, some errors staying undetected that happened in blocks or sub-blocks with an even number 

of errors [3]. For eliminating additional errors, the arbitrary permutation and block parity disclosure are 

repeated many times while using greater block sizes till (Alice) and (Bob) guess that some errors stay in the 

data as whole. Here, the block parity disclosure approach turns to be less because it makes (Alice) and (Bob) 

give up at least one bit in every block for the sake of privacy [3].  

 

2.3  Privacy Amplification  

Privacy Amplification is a technique of distilling highly secret shared information that could be used 

as a cryptographic key from a larger body of shared information which is only partially secret. Consequently, 

(Alice) and (Bob) are able to apply Privacy Amplification using the following assumptions. Assume (x) 

denotes the reconciled string and (n) denotes its length. Assume a deterministic bit of information about (x) 

evaluated as e(x) of a randomly function [ }1,0{}1,0{: ne ] [3].  

For example, physical and parity bits are deterministic bits, yet bits of information in the sense of 

Shannon’s information theory are not. Charles Bennett and Gilles Brassard showed that if (Eve’s) 

information about (x) is only (  ) deterministic bits, a randomly hash function (h) and publicly chosen from a 

proper class of functions [ snn  }1,0{}1,0{  ] will map (x) to h(x) about which (Eve’s) expected 

knowledge is less than [
2ln

2 S ] bit, where (s>0) is an arbitrary security parameter [3]. Later, this paper will 

show how to modify the use of hash functions to improve the output of privacy amplification phase. 

 

2.3.1 How to Control Eavesdropping Using Privacy Amplification 

   Realistically, (Eve) is not capable from generating errors while spying on communication to gain as 

maximum information as she can in a noisy channel where (Alice) and (Bob), the legitimate parties, could 

not differentiate either the induced errors were because of noise or (Eve). Hence, legitimate users need to the 

guarantee key distribution security within their network. (Alice) and (Bob) achieve such goal through 

focusing on “how to reduce the information leakage to (Eve) instead of distinguish noise and (Eve)” [1].  

  (Alice) and (Bob) can select one of these approaches given an estimation of the channel Error Rate. 

First, (Alice) and (Bob) can measure the gained information by (Eve) in the raw key using Shannon 

information and quantum information theory. (Alice) and (Bob) can depend on using the mutual information 

to measure (Eve’s) expected information about transferred messages on the quantum channel as expressed in 

Equation (1) as );( yxI  where (e) is the Error Rate of the communicating channel [1].  

);( yxI  OR )]1(log)1(log[1 22 eeeeIe   Equation (1) [1] 

 Secondly, (Alice) and (Bob) can delete the gained information by (Eve) from the raw key by 

calculating the probability that (Eve) can guess the correct key given her knowledge about it. It is achieved 

when (Eve) tries to measure a photon’s state correctly, then she will not be detected by (Alice) and (Bob), yet 

if (Eve) chose a wrong measurement, she will produce disturbance to the state of the photon as stated by 

Heisenberg Uncertainty Principle. The solution is meant to apply the Privacy Amplification framework of 

(BB84) protocol in order to lessen the leaked information to adversaries while the legitimate channel 

participants are communicating [1]. 

 

3.  The Basic Privacy Amplification Model in the BB84 Protocol 

(Alice) and (Bob) need to agree on a shared secret random bit string to be used as secret key for 

securing their message transmissions over an imperfect private channel, known as main channel, and an 

unauthenticated public channel, known as wire-tap channel [4].  

The private channel is an example of Binary symmetric Channel (BSC) that is imperfect because it 

allows an eavesdropper to reasonably spy on some of transmitted bits of exchanged keys without much 
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disturbance to the channel and protecting (Eve) from being detected. Such problem could be solved through 

applying Privacy Amplification. [5] .Concerning the public channel, it transfers information correctly since it 

is supported with error correcting code schemes, yet transmissions are exposed to (Eve) to read and not 

change. Such problem could be solved through applying authentication schemes [5]. 

  Hash functions are functions that map from larger domains to smaller ones. It is depicted as 

“assigning an abbreviation to a name” [6]. A 
2Universal hash class is a collection of hash functions instead of 

one function. Each time an application is run using 
2Universal hash functions, a hash function is randomly 

chosen from the hash collection [6]. In case the set of functions is cautiously selected to what is named as a 

2Universal class, thus many applications of hashing are estimated to have good performance for any 

distribution of inputs and not just the uniform distribution [6].  

 

3.1 Basics of Information Theory 

  The Binary Symmetric Channel (BSC) is a famous model for depicting communication scenario 

between two parties sending and transmitting data over a binary channel. It is required to find the Mutual 

Information );( yxI  of the channel where messages are delivered via binary digits of (0’s) and (1’s) [7]. The 

Mutual Information );( yxI could be expressed as: )(1);(max PyxI   (bits/binits.) Equation (2) [7] 

The Maximum Information transmitted in bits per binary digits (binits)  

]1log1log[1);( 22 PPPPyxI   (bits/binits.) Equation (3) [7] 

The Error Probability is defined as [ PPPPP 1log1log)(  ] where [ PP 1 ] Equation (4) [7] 

 

The maximum )(P value of (1) was found at (P=1/2), yet the minimum )(P value of (0) was found at 

(P=0) and (P=1) [7]. The information transmitted over a channel per symbol, );( yxI , is a function of channel 

matrix having probability of )|( ij xyP , and the input symbol probabilities )( ixP only. For one set of input-

symbol probabilities, );( yxI  reaches a maximum value [7]. This represents the maximum amount of 

transmitted information over the channel per symbol. Hence, the maximum value of );( yxI gained for a 

specific set of input symbols probabilities is known as Channel Capacity per Symbol transmitted [7].  

 Channel Capacity per symbol transmitted expressed as follows: 

  );(max )( yxIC
ixPs  (units/symbol) Equation (5) [7] 

 Binary Symmetric Channel Capacity expressed as follows: 

 )(1 PCs  (bits/binit) Equation (6) [7] 

where: PPPPP 1log1log)(  ; replacing ( log ) with ( 2log ) as of binary bits. 

 Binary Symmetric Channel Capacity expressed as follows: 

 ]1log1log[1 22 PPPPCs   (bits/binit) Equation (7) [7] 

The Channel Capacity )(1 PCs   minimum value of (0) was found at (P=1/2), yet the maximum 

)(1 PCs  value of (1) was found at (P=0) and (P=1) [7].  

  The relation Channel Capacity [ );(max )( yxIC
ixPs  ] (units/symbol) gives maximum possible 

rate of transmitted information when one symbol is transmitted. In case there are (K)-symbols being 

transmitted per second, then Maximum Rate of Information Transmission per second expressed [ ).( sCKC  ] 

Equation (8), where (K) is number of transmitted symbols over channel between sender and receiver [7].  

 

3.2 Using Truly Random Function to Minimize Eavesdropper’s Activity 

 

   The Error Detection function [ KNf }1,0{}1,0{:  ] was selected randomly among all functions 

from [
KN }1,0{}1,0{  ] requires )2( NK bits to transmit function (f) over the public channel. (Eve’s) 

information about string (x) is described by the set (C) of possible candidates that is known to (Alice) and 

(Bob). Let the string (x) of length (N) transmitted between (Alice) and (Bob) where (K<N) be the safety 

parameter for Error Detection and the value of (K) is bounded by )0( NK  [5].  

 [
NN }1,0{}1,0{:  ]: Randomly selected permutation of string(x) [5] 



                ISSN: 2089-3299 

IJINS  Vol. 3, No. 2,  April 2014 :  98 – 115 

102 

 [ KNf }1,0{}1,0{:  ]: Defined as [ )2()()( KModxxf  ] [5] 

 [Mod]: Length of (K)-bit string consisting of rightmost (K)-bits of string (x) [5] 

 [
KNNg  }1,0{}1,0{: ]: Defined as [ )2()()( KDivxxg  ] [5] 

 [Div]: Length of (N-K)-bit string obtained from string (x) by deleting its rightmost (K)-bits and 

proceeding with rest of string (x) [5] 

Both functions (f) and (g) are equitable functions. Thus, knowledge of  [as f( ) and g( )] and f(x) gives no 

information on g(x); except that of )( KNR  that is the desired length of the final compressed string. 

Assume (S) to be any non-negative integer as )( KNS   and )( SKNR  . Let [ RNg }1,0{}1,0{:  ] 

be any fixed equitable function, then the expected amount of Shannon Information given on g(x) by f(x):

]2ln2[);( SGFI   [5].  

 

3.3 Privacy Amplification by Public Discussion in BB84 Protocol 

The Privacy Amplification has an Information Measure framework listed in below steps [8]: 

 The reconciled key (x) is a random (N)-bit string of uniform distribution over binary alphabet N}1,0{ . 

 The [V =e (x)] is defined as a random eavesdropper function [ tNe }1,0{}1,0{:  ]; where )( Nt  . 

 The Error Probability is calculated via [ eeeee 1log1log)(  ] where [ ee 1 ] to calculate 

(t) in terms of Error Rate (e) [8]. 

 The Channel Capacity is defined as [ )(1),(max eyxI  ] and defined as [V (e)] [8]. 

 The (V) is a random (t)-bit string of leaked bits by (Eve) on (x) [8]. 

 The (S) is a positive safety parameter defined as )( tNS  and )0(  SN that is used to minimize 

number of leaked bits [8].  

 The [K =g (x)] is a random arbitrary key selected by (Alice) or (Bob) to be their secret key from a 

2Universal class of hash functions as [ RNg }1,0{}1,0{:  ] [8]. 

 The secret key (K) string is of length (R) which is generated by (Alice) and (Bob) where )( NR 

and (R) is computed as )( StNR   
[8]. 

 The secret key (K) is (R)-bit string generated by (Alice) or (Bob) where )0( NR   
[8]. 

 (Eve’s) expected information on secret key (K) given (G), (V) to be expressed as [
2ln

2
);(

S

GVKI


 ] 

 Information Measure );( GVKI is defined on average over the values of (V) [8]. 

 (Alice’s) and (Bob’s) tactics does not count on e ( ) since the Privacy Amplification model operates 

if (Alice) and (Bob) have nothing about e ( ) given that they have an upper bound on the value of (t) 

leaked bits on (W) [8]. 

 

Finally, (Alice) and (Bob) are able to have a secret key which is utilized into hybrid encryption techniques 

“for use as a cryptographic key from a larger body of shared information that is only partially secret” [8] 

during their message exchange communications. Therefore, using Privacy Amplification by public discussion 

enables the legitimate users to “distill a secret key about which (Eve) has arbitrary little information” [8].  

 

4. The Proposed Functional Model for Privacy Amplification 

Our proposed model discusses the input matrix model, entropy model formulation, matrix 

permutation model, matrix message digest hashing model and deployed functions. The model introduces a 

new solution to enhance the Privacy Amplification of (BB84) protocol through combining the set of hashing 

functions with the truly random functions of Mod and Div to have Hash-Mod and Hash-Div functions. Both 

new functions are used to hash, compress or shrink the reconciled key generated from (BB84) second phase. 

A set of experiments were conducted over truly random functions in combination with permutation and 

message digest hashing in order to evaluate the performance measure of Privacy Amplification using a 

proposed Entropy metric and the introduced Information Measure [9]. 

 

4.1 [2D]-Input Matrix Model 

It is a random key 2D matrix generation of desired keys number as (rows) by message digest hash 

signature key size as (columns). It is used as a loading key set to start running every function in order to 

calculate the Entropy value metric for every used (R-Value) scanned per every key size into the 2D matrix. 

The matrix generation algorithm is known for the following [9]: 
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 Sizing the key buffer to the desired message digest hash signature size and saving every sized key 

buffer into matrix column while looping over the rest of desired keys in the matrix rows until the 

2D-matrix is built [9]. 

 Every key buffer is stored as binary array into matrix for later Entropy value metric calculations and 

having a 2D binary array of (1’s) and (0’s) [9]. 

 

4.2 Entropy Model Formulation 

  The “entropy of (m) is a measure of uncertainity, and then the probability distribution which 

generates the maximum uncertainty will have maximum entropy”. The Entropy equation could express as:  

)(log1log)(
1

2

1

2 bitsPPPPmH
n

i

ii

n

i

ii 


 Equation (9) [7] 

The Entropy measurement metric mechanism depends on having a 2D-input matrix made of keys of 

different (R)-values where )0( NR  . The (R)-values could be of (0)-bit length, where its entropy is 

zero, and ranges to (N)-bit length, where its entropy equals or grater than zero. All experiments generated 

relative entropy for every (R)-value. The input matrix has rows of (M)-key of range belongs to ]1[ Mi   

and has columns of (N)-bit key length of range belongs to ]1[ Nj  . Every element in the matrix is 

represented by ][ ijb  bit value of {0, 1} binary domain. The applied experiments aim to calculate the 

probability of having (1’s) in the matrix columns using Equation (10) and further illustrated into Figure (2).  

[ Mbp
M

i

ijj 



1

]; where ][ jp the probability that bit (j) is {1}. Equation (10) [9] 

 
Figure (2): Practical Demonstration of Proposed Entropy Model [9] 

 

4.3 Matrix Permutation Model 

It is a permutated 2D-matrix applied to 2D-input matrix of desired keys number as (rows) by 

message digest hash signature key size as (columns). It maintains permutation of key bits’ locations, made of 

(1’s) and (0’s), randomly and scattered; while keeping same number of (1’s) and (0’s) per key into the 2D-

matrix. Such scheme is iterated over every key into 2D-matrix until all keys are successfully scattered [9]. 

 

4.4 Matrix Message Digest Hashing Model 

The hashing model is based on the message digest hashing algorithms supported by the 

FlexiProvider package. FlexiProvider has been developed by the Theoretical Computer Science Research 

Group of Professor Johannes Buchmann at the department of Computer Science at Technische Universität 

Darmstadt in Germany [10]. The hashing model applies (Big) Endian or (Little) Endian over fourteen defined 

message digest hashing algorithms according to experiment configurations that shapes how the 2D-Input 
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Matrix keys are hashed according to the Endian type configuration [10]. The hashing functions maintain 

scattering of input keys made of (1’s) and (0’s) randomly through the use of the Endian storing mechanism; 

however they do not keep the same number of (1’s) and (0’s) per key into the 2D-matrix. Such scheme is 

iterated over every key into the 2D-matrix until all keys are successfully scattered and compressed. The 

defined fourteen message digest hashing algorithms implemented by FlexiProvider package and their 

corresponding signature size in bits are shown in Table (1) [10]:  

 

Table (1): Flexiprovider 14 Message Digest Hashing Algorithms with Sizes [10] 

[MD4] signature size = 128 bits [MD5] signature size = 128 bits 

[RIPEMD128] signature size = 128 bits [RIPEMD160] signature size = 160 bits 

[RIPEMD256] signature size = 256 bits [RIPEMD320] signature size = 320 bits 

[SHA1] signature size = 160 bits [SHA224] signature size = 224 bits 

[SHA256] signature size = 256 bits [SHA384] signature size = 384 bits 

[SHA512] signature size = 512 bits [Tiger] signature size = 192 bits 

[DHA256] signature size = 256 bits [FORK256] signature size = 256 bits 

 

4.5 Deployed Functions 

The presented work defines six functions where the main two are Mod and Div functions. Another 

two functions are a combination of permutation function with Mod and Div. The last two functions are a 

combination of message digest hash functions with Mod and Div. All six functions take the reconciled keys 

generated from (BB84) second phase as 2D-input matrix to generate shorter compressed keys as 2D-output 

matrix. The 2D- input matrix is made of some number of randomly generated binary keys, known as (Key 

Number), while every key has a fixed length equals to the selected message digest hash function signature 

size, known as (Key Size) [9]. The performance measure metric is using our customized Entropy model as 

well as adopting the Information Measure. Through our model, we use a string (x) which is a reconciled 

random binary key of length (N)-bit resulted from a uniform distribution N}1,0{ . A function [ )(xgK  ] is a 

random hash function selected from a 
2Universal hash functions that outputs a key string of (R)-bit string 

which length belongs to )0( NR  . The proposed work defines eight functions [9]: 

1. Permutation function ( ) applied to binary string (x) of length (N) and outputs a permutated string of 

same length (N) which preserves the number of (1’s) and (0’s), while randomly shuffle their locations. 

Permutation Function: NN }1,0{}1,0{:   Equation (11) [5] 

2. Message digest hash function ( ) applied to binary string (x) of length (N) and outputs a hashed string 

of selected hash function signature length which changes the number of (1’s) and (0’s) and randomly 

shuffle their locations via using big or little endian types. 

Hash Function: SignatureN }1,0{}1,0{:   Equation (12) [5] 

3. Mod function ( )(xgMod
) applied to binary string (x) of length (N) and outputs a compressed string of 

length (R)-bit which is made of rightmost (R)-bits of string (x). 

Mod: RN

Modg }1,0{}1,0{:   OR )2()()( R

Mod Modxxg   Equation (13) [5] 

4. Div function ( )(xgDiv ) applied to binary string (x) of length (N) and outputs a compressed string of 

length (N-R)-bit which is made of string (x) by deleting its rightmost (R)-bits and proceeding with rest 

of bits of string (x). 

Div: RNN

Divg  }1,0{}1,0{: OR )2()()( RN

Div Divxxg  Equation (14) [5] 

5. Perm-Mod function ( )(xg ModPerm ) applied to binary string (x) of length (N) where permutation 

function is applied first to string (x) and then apply the Mod function.  

Perm-Mod: RN

ModPermg }1,0{}1,0{: 
 OR )2()()( R

ModPerm Modxxg 
Equation (15) [9] 

6. Perm-Div function ( )(xg DivPerm ) applied to binary string (x) of length (N) where permutation function 

is applied first to string (x) and then apply the Div function.  

Perm-Div: RNN
DivPermg 

  }1,0{}1,0{: OR )2()()( RN

DivPerm Divxxg 

   Equation (16) [9] 

7. Hash-Mod function ( )(xg ModHash ) applied to binary string (x) of length (N) where digest hash 

function is applied first to string (x) and then apply the Mod function.  

Hash-Mod: RN

ModHashg }1,0{}1,0{: 
 OR )2()()( R

ModHash Modxxg 
 Equation (17) [9] 
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8. Hash-Div function ( )(xg DivHash ) applied to binary string (x) of length (N) where digest hash function 

is applied first to string (x) and then apply the Div function.  

Hash-Div:
RNN

DivHashg 

  }1,0{}1,0{: OR )2()()( RN

DivHash Divxxg 

  Equation (18) [9] 

 

5. Privacy Amplification Simulators 

The presented work developed three simulators that demonstrate the relationship between the (R)-

bit secret key string denoted as (K) and the Entropy (E). This relationship shows how far using permutation 

function and message digest hashing function had influenced the performance of Mod and Div functions in 

the generation of a compressed secret key from the reconciled random (N)-bit string key denoted as (W). The 

hash function g ( ) denoted as [K = g (W)] is a random hash function selected by (Alice) and (Bob) from a 

2Universal class of hash functions in order to generate their secret key. Meanwhile, (Eve) can spy over their 

transmitted key bits using a random eavesdropper function e ( ) denoted as [V =e (W)] where (V) is a random 

(t)-bit string of leaked bits resulted from listening on string key (W) [8]. The Privacy Amplification defined 

the (R-Value) in terms of (N), (t) and a positive safety parameter denoted as (S), where (R-Value) is 

computed as (R=N-t-S). Also, the model defined (Eve’s) expected information on secret key (K) given (G) 

and (V) and known as Information Measure defined into Equation (19) [9]. 

Information Measure on (K) given (G), (V) is [
2ln

2
);(

S

GVKI


 ] Equation (19) [8] 

The simulations were designed to run on three forms of (R-Value) in order to show the development stages of 

(R-Value) calculation as secret key string length where it is formulated: (R=N), (R=N-t) and (R=N-t-S) [9]. 

 

5.1 (R=N) Simulator Model 

This simulator uses a simple structure of (R-Value) to conduct a study on its multiple values by 

applying the six types of Mod and Div combined with permutation and message digest hash functions. The 

simulator applies the range of (N) for the (R-Value) and formulated as (R=N) through setting some 

parameters within configuration file of our simulator developed by Java programming language [9]. 

 

5.2 (R=N-t) Simulator Model 

This simulator uses another structure of (R-Value) to conduct a study on its multiple values by 

applying the six types of Mod and Div combined with permutation and message digest hash functions. The 

secret key (K) of length (R=N-t) is computed through setting some parameters within configuration file of 

our simulator developed by Java programming language [9] as follows: 

 Using the Binary Symmetric Channel Capacity defined before in Equation (7). 

 The )( sC  is refined using [ )(eV ] and defined in terms of (e) as (Error Rate) defined Equation (20).  

 ))]1(log)1(()log(1[)( 22 eeeeeV   Equation (20) [1] 

 Using Channel Capacity in Information Units (per second) was defined before in Equation (8) [7] 

 The transmitted bits (K) in )(C is refined to be (N) that is the secret key size in bits. The )( sC  is 

refined as [ )(eV ] which is defined in terms of (e) or (Error Rate). The )(C  is refined to be (t) that 

is leaked bits by (Eve) and defined into Equation (21). 

tValue = (t) = [N * V (e)] Equation (21) [9] 

 The (R-Value) is computed in terms of (N) which is the secret key (K) size in bits and (t) the leaked 

bits by (Eve). Hence, the (R-Value) is defined as (R=N-t) [9]. 

 

5.3 (R=N-t-S) Simulator Model 

This simulator uses a third structure of (R-Value) in order to conduct a study on its multiple values by 

applying the six types of Mod and Div combined with permutation and message digest hash functions. The 

secret key (K) of length (R=N-t-S) is computed through setting some parameters within configuration file of 

our simulator developed by Java programming language [9] as follows: 

 Using the Binary Symmetric Channel Capacity defined before in Equation (7) 

 Using the [ )(eV ] defined before in Equation (20) [1] 

 Using the Channel Capacity in Information Units (per second) was defined before in Equation (8) 

 Using the [tValue] defined before in Equation (21) [9] 

 The positive Security Parameter (S) is introduced which lies in range of [ tNS 0 ]. The 

Security Parameter (S) value is calculated as [S=N–t] in terms of (N) secret key size in bits and (t) 

leaked bits by (Eve). Equation (22) [9] 
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 The (R-Value) is computed in terms of (N) which is the secret key size in bits, (t) the leaked bits by 

(Eve) and the positive Security Parameter (S). Hence, (R-Value) is defined as (R=N-t-S). [9] 

 The Information Measure introduced by Bennett and Brassard which is known as (Eve’s) expected 

information on secret key (K) given (G) and (V) is calculated in terms of (S) and defined as  

[
2ln

2
);(

S

GVKI


 ] Equation (19) [8] 

The experiments were conducted based on a set of parameters shown in Table (2) that shaped the results 

output and were used to sketch the experimental graphs later [9]. 

 

Table (2): Set of Parameters for Privacy Amplification Phase [9] 

Parameter Description R=N R=N-t R=N-t-S 

KeysNum The number of reconciled keys loaded into random 2D-

Input matrix 
      

KeySize The key length of every reconciled key known as (N)-bit 

string key where its value equals selected message digest 

hash signature size 

      

HashFunction The message digest hash function selection out of (14) hash 

functions developed by FlexiProvider. Our experimental 

runs used (MD4-128 bits). 

      

EndianType The Endian type that is either (Big) or (Little) as defined by 

Flexiprovider  
      

LoopsNum The number of loops within simulator that sets how many 

Entropy iteration needed to calculate the average Entropy 

via dividing by (LoopsNum) 

      

ErrorRateLimit Maximum value for (Error Rate) vector size generation that 

defines possible error value used in calculations that ranges 

from (0) multiplied by (0.01) to the maximum determined 

value multiplied by (0.01) 

    

ChannelErrorRate The maximum value for the Channel Error Rate that is a 

fixed value out of [0.0, 0.25, 0.50, 0.75, 1.0] in order to 

allow variation of Security Parameter vs. (R-Value). Our 

experimental runs used (0.50) value   

    

 

6. Experimental Comparison of Proposed Models 

   A systematic approach was applied to conduct experimentations and extract the results for both the 

Mod and the Div implementations of key. The target is assessing the performance of both implementations 

with respect to their Entropy measure under different configurations that influence the outcome of 

experiments for the (R=N), (R=N-t) and (R=N-t-S) simulators [9]. 

 

6.1 Experimental Scenarios for (R=N) 

The experiment was configured to use (KeysNum=100), (KeySize = 128) of same (MD4) signature 

size, (LoopsNum = 10), (HashFunction = MD4) and (EndianType = Little) for both implementations of Mod 

and Div functions. The three Mod functions recorded maximum Entropy value for each at (R-Value) of (128) 

and the average Entropy values were close for the three algorithms for (R-Value) from (1) to (108). However, 

continuing (R-Value) from (109) to (128), the Entropy values of Perm-Mod algorithm became higher than 

those of the Mod function. The Entropy values of Hash-Mod algorithm are also higher than those of Mod 

function and Perm-Mod function in that region. Consequently, the knee-shaped of Mod function at high (R-

Value) from (109) to (128) was corrected by Perm-Mod function and further rectified by Hash-Mod function. 

Both Mod and Perm-Mod Entropy increasing curves resulted from implementing the standard (BB84) 

Privacy Amplification which demonstrated the permutation function would produce more Entropy 

improvement because of the permutation scattering effect. The knee-shaped curve, behaved as a constant 

function in its region and demonstrated by Mod function, was later cured by the effect of using Perm-Mod 

function at high (R-Value) as a straight line-shape as shown in Figure (3) [9]. 

The Hash-Mod function proved a better performance over the Perm-Mod and Mod functions. The knee-

shaped curve appearing at high (R-Value) ranging from (109) to (128) had diminished by using Perm-Mod 

function. Similarly, Hash-Mod function managed to produce enhanced results because of the hashing 

compression and scattering effects. Such correction of knee-shaped of Mod function in both of Perm-Mod 

and Hash-Mod functions had preserved the whole range of (R-Value) to be fully utilized instead of removing 
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such defected knee-shaped area [9]. 

    
Figure (3): Scenario (R=N) for Mod-Function                 Figure (4): Scenario (R=N) for Div-Function 

using (MD4-128) of Little Endian [9]                                using (MD4-128) of Little Endian [9] 

The three Div functions recorded zero Entropy value for every one at (R-Value) of (128) and the 

average Entropy values of Hash-Div function are slightly higher than those of Perm-Div function over the 

entire range of (R-Values). On the other hand, the Entropy readings of Div function are far below those of 

Perm-Div and Hash-Div functions. Consequently, the knee-shaped of the Div function at high (R-Values) 

from (109) to (128) was corrected by the Perm-Div function and further rectified by the Hash-Div function. 

Both Div and Perm- Div results were obtained by implementing the standard (BB84) Privacy Amplification 

that demonstrated the permutation function would show much entropy improvement because of the 

permutation scattering effect. In addition, the knee-shaped curve, behaved as a constant function in its region 

and demonstrated by the Div function, which was obtained for the Div function was later cured by the effect 

of using Perm-Div function at (R-Value) in range of (109) to (128) as a straight line-shape as shown in 

Figure (4). The knee-shaped curve appearing at high (R-Value) ranging from (109) to (128) had diminished 

by using Perm-Div function. Similarly, Hash-Div function managed to produce enhanced results because of 

the hashing compression and scattering effects. Such correction of knee-shaped of Div function in both of 

Perm-Div and Hash-Div functions had preserved the whole range of (R-Value) to be fully utilized instead of 

removing such defected knee-shaped area [9]. 

 

6.2 Experimental Scenarios for (R=N-t) 

The experiment was configured to use (KeysNum=100), (KeySize = 128) of same (MD4) signature 

size, (LoopsNum = 10), (HashFunction = MD4), (EndianType = Little) and (ErrorRateLimit = 100) for both 

implementations of Mod and Div functions. The three Mod functions recorded zero Entropy value for each 

(R-Value) of (0) for (Error Rate) of (0) and maximum Entropy value for each (R-Value) of (128) for (Error 

Rate) of (0.5) and zero Entropy value for each at (R-Value) of (0) for (Error Rate) of (1). The average 

Entropy values were close for the three algorithms for (R-Value) from (1) to (108). However, continuing (R-

Value) from (109) to (128), the Entropy values of Perm-Mod algorithm become higher than those of the Mod 

function. The Entropy values of Hash-Mod algorithm were also higher than those of Mod function and Perm-

Mod function in that region [9]. 

Consequently, the knee-shaped of the Mod function at high (R-Value) from (109) to (128) was 

corrected by the Perm-Mod function and further rectified by the Hash-Mod function. The (R-Value) was 

computed via (R-Computed) since it is a function in (Error Rate). Therefore, the (R-Computed) values were 

not sequentially generated as they resulted from an equation as shown in Figure (5). Both Mod and Perm-

Mod Entropy curves resulted from implementing the standard (BB84) Privacy Amplification and 

demonstrates that the permutation function would produce more Entropy improvement because of the 

permutation scattering effect [9]. In addition, the knee-shaped curve, behaved as a constant function in its 

region, which was demonstrated by the Mod function, was later cured by the effect of using Perm-Mod 

function at high (R-Computed) as a straight line-shape. There is a mirror axis appeared around the Error Rate 

of (0.50) value where (R-Computed) of (128) and the three functions could be graphed using any data either 

above or below the mirrored axis. The Hash-Mod function showed more increasing curve behavior over the 

Perm-Mod and Mod functions. Moreover, the knee-shaped appeared at high (R-Computed) ranging from 

(109) to (128) had diminished later by the effect of using Perm-Mod function. The Hash-Mod function 
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managed to show such progress because of the hashing compression and scattering effects [9]. 

 
 

 
Figure (5): Scenario (R=N-t) for Mod-Function       Figure (6): Scenario (R=N-t) of Error Rates for 

using (MD4-128) of Little Endian [9]                        Mod-Function using (MD4-128) of Little Endian [9] 

 

Similar to graphing the (R-Computed) across the average Entropy of the three Mod functions, the 

(Error Rate) is also graphed across the average Entropy to compare behavior of functions as shown in Figure 

(6). The new graphs of the three Div functions showed a similar incrementing behavior with knee-shaped to 

prove that the Div function is maintaining an increasing graphical behavior. The behavior of the three Div 

algorithms is shown graphically in Figure (7). The Perm-Div and Hash-Div Entropy functions showed a 

decreasing behavior, while the Div Entropy function showed more decreasing behavior than the other. In 

addition, the knee-shaped curve, behaved as a constant function in its region, which was obtained for the Div 

function was later cured by the effect of using Perm-Div function at (R-Computed) in range of (109) to (128) 

as a straight line-shape. The Perm-Div Entropy curve showed a notable development over the Div Entropy 

curve to prove the importance of permutations. As of the mirror axis that appeared around the Error Rate of 

(0.50) value and around the (R-Computed) of (128) generating (AVG-Entropy) of (0) for the three types of 

Div function. Thus, the three functions could be graphed using any data either above or below the mirrored 

axis. Later, the current thesis introduced new function named Hash-Div function that apply the message 

digest hashing functions by hashing the key to a fixed hash signature then apply the Div function. The Hash-

Div function showed more increasing curve behavior over the Perm-Div and Div functions. Moreover, the 

knee-shaped appeared at high (R-Computed) ranging from (109) to (128) had diminished later by the effect 

of using Perm-Div function. The Hash-Div function introduced in the present work showed such progress 

because of the hashing compression and scattering effects. Thus, hashing had improved Entropy values, 

which proved to be more promising during experimentations [9]. 
 

 
Figure (7): Scenario (R=N-t) for Div-Function        Figure (8): Scenario (R=N-t) of Error Rates for 

using (MD4-128) of Little Endian [9]                        Div-Function using (MD4-128) of Little Endian [9] 

Such correction of knee-shaped of Div function in both of Perm-Div and Hash-Div functions had 

preserved the whole range of (R-Computed) to be fully utilized instead of removing such defected knee-

shaped area in Div function. Moreover, the permutation and hashing had improvements over the Div curve 

because they generated elevated curves for both Perm-Div and Hash-Div than the Div function curve [9]. 
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Similar to graphing the (R-Computed) across the average Entropy of the three Div functions, the (Error Rate) 

is also graphed across the average Entropy to compare behavior of functions as shown in Figure (8). The 

new graphs of the Perm-Div and Hash-Div functions showed a similar decrementing behavior while the Div 

Entropy function showed more decreasing behavior than the others. Hence, such decrementing behavior 

proves that the Div function is maintaining a decreasing graphical behavior. The Channel Capacity model 

verification using V(e) could be achieved to get the Binary Symmetric Channel Capacity as defined into 

Equation (7) in section (3) and defined in terms of (P) as the (Error Probability).  

The )( sC  is refined to be V(e) which is defined in terms of (e) as the (Error Rate) and declared the following 

substitutions [9]: 

 Error Probability of value (P = 0) generated )( sC of value (1) 

 Error Probability of value (P = 1/2) generated )( sC of value (0) 

 Error Probability of value (P = 1) generated )( sC of value (1) 

The (Error Rate) was graphed against V(e) as shown in Figure (9) and defined as  

[ )]1(log)1(log[1)( 22 eeeeeV  ] which applied the following readings [9]: 

 Error Rate of value (e = 0) generated V(e) of value (1) 

 Error Rate of value (e = 1/2) generated V(e) of value (0) 

 Error Rate of value (e = 1) generated V(e) of value (1) 

Throughout our work, we managed to prove the applied equations of the Privacy Amplification model are in 

compliance with the Information Theory model concerning the Binary Symmetric Channel Capacity
)( sC
. 

All results generated by the three Mod and Div functions are successfully verified because graph equations in 

Figure (9) used )( sC  within their equation formulation [9]. 

 

 
Figure (9): Scenario (R=N-t) of Channel                   Figure (10): Scenario (R=N-t) of Information 

Capacity having Error Rates Vs [V (e)] [9]          Channel Capacity having Error Rates Vs (t-Value) [9] 

 

Information Channel Capacity Model Verification using [t-Value] could be achieved get the Channel 

Capacity in Information Units (per second) as defined into equation Equation (8) in section Equation (2) 

where the transmitted bits (K) in (C) is refined to be (N) [9]. 

The 
)( sC
 is refined as V(e) which is defined in terms of (e) or (Error Rate). The (C) is refined to be (t) and 

defined to be (t-Value) or [(t) = N * V (e)]. The (Error Rate) was graphed against (t-Value) as shown in 

Figure (10) and concluded the following readings [9]: 

 Error Rates of value (e = 0) generates V(e) of value (1) 

 Error Rates of value (e = 1/2) generates V(e) of value (0) 

 Error Rates of value (e = 1) generates V(e) of value (1) 

Applying the (t-Value) rule by multiplying the V(e) by the (N) represented by (KeySize) parameter value that 

happened to be (128) as configured into the experiment, we get [9]: 

 Error Rates of value (e = 0) generates [N*V(e)] of value (128*1 = 128) 

 Error Rates of value (e = 1/2) generates [N*V(e)] of value (128*0 = 0) 

 Error Rates of value (e = 1) generates [N*V(e)] of value (128*1 = 128) 

Throughout our work, we managed to prove the applied equations of the Privacy Amplification model are in 

compliance with the Information Theory model concerning the (C) or the Channel Capacity in Information 

Units (per second). All results generated by the three Mod and Div functions are successfully verified 

because graph equations in Figure (10) are using (C) within their equation formulation [9]. 
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6.3 Experimental Scenarios for (R=N-t-S) 

The experiment was configured to use (KeysNum=100), (KeySize = 128) of same (MD4) signature 

size, (LoopsNum = 10), (HashFunction = MD4), (EndianType = Little) and (ChannelErrorRate = 0.50) used 

to apply the mirrored case of having (V (e) = 0, where e = 0.50) and (tValue = 0) in order to study the full 

range of (R-Computed) through the full range of Security Parameter (S) for both implementations of Mod 

and Div functions. The Mod and Perm-Mod functions return the same input key size since both functions are 

preserving the key size, yet the Hash-Mod function compresses the key to its signature size which is (128) 

bits. This helped in applying fair comparisons of Entropy values for equal (R-Computed) of the three Mod 

functions. The experiment aimed to adjust the key size configuration parameter to be of the same hashing 

signature size. Therefore, the experiment deployed the (MD4) hashing algorithm of (KeySize) equals to 

(128). By inspecting the results for the three Mod functions implementations, they recorded maximum 

Entropy value for every one at (R-Value) of (128) for Security Parameter (S) of (0) and zero Entropy value 

for every one at (R-Value) of (0) for Security Parameter (S) of (128) value. Also, the results show that the 

average Entropy values are close for the three algorithms for (R-Value) from (1) to (108) [9].  

However, continuing (R-Value) from (109) to (128), the Entropy values of Perm-Mod algorithm 

become higher than those of the Mod function. The Entropy values of Hash-Mod algorithm are also higher 

than those of Mod function and Perm-Mod function in that region. Consequently, the knee-shaped of Mod 

function at high (R-Value) from (109) to (128) corrected by Perm-Mod function and further rectified by 

Hash-Mod function [9]. 

Finally, the (R=N-t-S) simulator computes the (R-Value) through the (R-Computed) because it is a 

function in Security Parameter variable (S), yet having (e) of fixed value determined via the 

(ChannelErrorRate = 0.50) configuration parameter. In turn, this shows that the (R-Computed) values were 

sequentially generated as they resulted from an equation that depends on (S). The (R-Computed) is calculated 

as (R=N-S) where (t = 0) and this shows that (R-Computed) depends on (N) and Security Parameter variable 

(S). Also, the Security Parameter variable (S) lies in range of )0( NS   instead of )0( tNS   where 

(t = 0). The Information Measure introduced by Bennett and Brassard defined as [ 2ln

2
);(

S

GVKI



] is applied 

to every value of (R-Computed) generated in terms of (S) and (N) [9]. 

The behavior of the three Mod algorithms is shown graphically in Figure (11). Both Mod and Perm-

Mod Entropy functions resulted from implementing the standard (BB84) Privacy Amplification and 

demonstrates that the permutation function would produce more Entropy improvement because of the 

permutation scattering effect. In addition, the knee-shaped curve, behaved as a constant function in its region, 

which was demonstrated by the Mod function, was later cured by the effect of using Perm-Mod function at 

high (R-Computed) as a straight line-shape. Later, the current work introduced new function named Hash-

Mod function that apply the message digest hashing functions by hashing the key to a fixed hash signature 

then apply the Mod function. The Hash-Mod function showed more increasing curve behavior over the Perm-

Mod and Mod functions [9]. 

 

 
Figure (11): Scenario (R=N-t-S) for Mod-      Figure (12): Scenario (R=N-t-S) for Div- 

Function using (MD4-128) of Little Endian [9]           Function using (MD4-128) of Little Endian [9] 

 

Moreover, the knee-shaped appeared at high (R-Computed) ranging from (109) to (128) had 

diminished later by the effect of using Perm-Mod function. The Hash-Mod function managed to show such 

progress because of the hashing compression and scattering effects. Therefore, the hashing technique had 
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improved Entropy values which proved to be more promising during experimentations.Such correction of 

knee-shaped of Mod function in both of Perm-Mod and Hash-Mod functions had preserved whole range of 

(R-Computed) to be fully utilized instead of removing such defected knee-shaped area in Mod function [9]. 

The Div and Perm-Div functions return the same input key size since both functions are preserving 

the key size. However, the Hash-Div function compresses the key to its signature size which is (128). This 

aided in applying fair comparisons of Entropy values for equal (R-Computed) of the three Div functions. 

Similar to the behavior of Mod function, the experiment adjusted the key size to be of the same hashing 

signature size. The experiment deployed the (MD4) hashing algorithm and in turn the used (KeySize) for the 

three Div function implementations was (128). Also, the experiment hashing used the (Little) Endian type as 

a configuration parameter [9]. 

By examining the results for the three Div functions implementations, they recorded zero Entropy 

value for every one at (R-Value) of (128) for Security Parameter (S) of (0) and maximum Entropy value for 

every one at (R-Value) of (0) for Security Parameter (S) of (128) value. Also, the results show that the 

average Entropy values of Hash-Div function are slightly higher than those of Perm-Div function over the 

entire range of (R-Value). On the other hand, the Entropy readings of Div function are far below those of 

Perm-Div and Hash-Div functions. Consequently, the knee-shaped of the Div function at high (R-Value) 

from (109) to (128) was corrected by Perm-Div function and further rectified by Hash-Div function [9]. 

Finally, the (R=N-t-S) simulator computes the (R-Values) through the (R-Computed) because it is a 

function in Security Parameter variable (S), yet having (e) of fixed value determined via the 

(ChannelErrorRate = 0.50) configuration parameter. In turn, this shows that the (R-Computed) values were 

sequentially generated as they resulted from an equation that relies on (S). The (R-Computed) is computed as 

(R=N-S) where (t = 0) and this shows that (R-Computed) relies on (N) and the Security Parameter variable 

(S). Also, the Security Parameter variable (S) lies in the range of )0( NS   instead of )0( tNS   where 

(t = 0). The Information Measure introduced by Bennett and Brassard formulated as [ 2ln

2
);(

S

GVKI



] is 

applied to every value of (R-Computed) generated in terms of (S) and (N) [9]. 

The behavior of the three Div algorithms is shown graphically in Figure (12). The Perm-Div and 

Hash-Div Entropy functions showed a decreasing behavior, while the Div Entropy function showed more 

decreasing behavior than the others. Both Div and Perm- Div results were obtained as suggested by the 

standard (BB84) Privacy Amplification that demonstrated the permutation function would show much 

entropy improvement because of the permutation scattering effect. In addition, the knee-shaped curve, 

behaved as a constant function in its region, which was obtained for the Div function was later cured by the 

effect of using Perm-Div function at (R-Computed) in range of (109) to (128) as a straight line-shape. The 

Perm-Div Entropy curve showed a remarkable enhancement over the Div Entropy curve that proved the 

importance of the permutations [9]. 

 

 
Figure (13): Scenario (R=N-t-S) for                             Figure (14): Scenario (R=N-t-S) for Security- 

R-Computed Vs Log (Information-Measure) [9]        Parameter Vs Log (Information-Measure) [9] 

 

Later, the current work introduced new function named Hash-Div function that apply the message 

digest hashing functions by hashing the key to a fixed hash signature then apply the Div function. The Hash-

Div function showed higher curve over both Perm-Div and Div functions. Moreover, the knee-shaped 

appeared at high (R-Computed) ranging from (109) to (128) had diminished later by the effect of using Perm-

Div function. The Hash-Div function introduced in the present work showed such progress because of the 

hashing compression and scattering effects. Therefore, the hashing technique had improved Entropy values 

which proved to be more promising during experimentations. Such correction of knee-shaped of Div function 
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in both of Perm-Div and Hash-Div functions had preserved the whole range of (R-Computed) to be fully 

utilized instead of removing such defected knee-shaped area in Div function. Moreover, the permutation and 

hashing had improvements over the Div curve because they generated elevated curves for both Perm-Div and 

Hash-Div than the Div function curve [9]. 

The Information Measure Metric shows the results obtained for the Mod and Div three function 

forms. By inspecting the columns of Security Parameter (S), (R-Computed) and Information Measure in both 

tables, it is concluded that the (R-Computed) values are directly proportional with the Information Measure, 

yet the Security Parameter (S) values are inversely proportional with the Information Measure. The highest 

value of (R-Computed) is (128) has an Information Measure of (1.442695041) and the lowest value of (R-

Computed) is (0) has an Information Measure of (4.2397E-39). However, the lowest value for the Security 

Parameter (S) is (0) has an Information Measure of (1.442695041) and the highest value of Security 

Parameter (S) is (128) has an Information Measure of (4.2397E-39). The Information Measure, introduced by 

Charles Bennett and Gillis Brassard who developed the (BB84) protocol, is the second metric used to ensure 

the restriction of an eavesdropper’s knowledge upper bound about the compressed or secret key transmitted 

between the two legitimate users over the communication channel. The Information Measure formulated 

equation states that (Eve’s) expected information on secret key (K) given (G), (V) as [ 2ln

2
);(

S

GVKI



] which 

is a function in Security Parameter (S) [8]. Hence, the Information Measure equation shows that the more the 

quantity [ 2ln

2 s

] is small, then the lesser information (I) of the eavesdropper happens. This implies that the 

Privacy Amplification phase of (BB84) protocol’s security depends on minimization of the quantity [ 2ln

2 s

] in 

order to ensure (Eve’s) expected information on secret key (K) is diminishing and having a distillated secret 

key free from leaked bits. Thus, the conducted experiments for (R=N-t-S) simulator proved such security 

notion where the least Information Measure value was accomplished for the secret key length or (R-

Computed) equals (0), however, the Information Measure value kept on increasing as the secret key length or 

(R-Computed) was increasing in value. The behavior of such direct proportional relation is graphed in Figure 

(13) showing (R-Computed) Vs 10Log
(Information-Measure). The Information Measure values were very 

small to be graphically represented; hence we applied Logarithm function of (base-10) to the Information 

Measure values. Such [ 10Log
] function maintained having a direct proportional relationship through an 

increasing behavior between (R-Computed) and (Information-Measure) [9]. 

Moreover, the conducted experiments for (R=N-t-S) simulators had also verified the security notion 

where the least Information Measure value was accomplished for the secret key Security Parameter (S) 

equals (128), however, the Information Measure value kept on increasing as the secret key Security 

Parameter (S) was decreasing in value. The behavior of such inversely proportional relation is graphed in 

Figure (14) showing the Security Parameter (S) Vs 10Log
(Information-Measure). Again, the Information 

Measure values were very small to be graphically represented; hence we applied Logarithm function of 

(base-10) to the Information Measure values. Such [ 10Log
] function maintained having an inversely 

proportional relationship through a decreasing behavior between Security Parameter (S) and (Information-

Measure) [9]. 

 

6.4 Enhancements of Hash over Permutation Functions 

The behavior of Perm-Mod and Hash-Mod algorithms demonstrating the average Entropy progress 

which are deployed within the three defined types of simulators and configured with (MD4-128) message 

digest hash function is shown in Figure (15). The hashing effect of Hash-Mod function showed enhanced 

values over the permutation effect of Perm-Mod function. By examining Figure (15), we noticed that the 

(R=N-t) simulator showed higher values of permutation and hashing over (R=N) and (R=N-t-S) ones which 

were nearly equal in values. The difference in average Entropy progress percentage for [(Hash-Mod) – 

(Perm-Mod)] % applied to Figure (15) [9]: 

 

 (R=N): (4.556918239) - (2.729937918) = (1.826980321 %) 

 (R=N-t): (4.95530088) - (3.931554798) = (1.023746082 %) 

 (R=N-t-S): (4.456260295) - (2.686937993) = (1.769322302 %) 

 

Also, the behavior of Perm-Div and Hash-Div algorithms demonstrating the average Entropy 

progress which are deployed within the three defined types of simulators and configured with (MD4-128) 
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message digest hash function is shown in Figure (16). The hashing effect of Hash-Div function showed 

enhanced values over the permutation effect of Perm-Div function. By examining Figure (16), we noticed 

that the (R=N-t) simulator showed higher values of permutation and hashing over (R=N) and (R=N-t-S) 

ones which were nearly equal in values. The difference in average Entropy progress percentage for [(Hash-

Div) – (Perm- Div)] % applied to Figure (16) [9]:  

 (R=N): (177.7187055) - (176.7871512) = (0.9315543 %) 

 (R=N-t): (198.3982817) - (194.8842781) = (3.5140036 %) 

 (R=N-t-S): (176.1395125) - (173.241891) = (2.8976215 %) 

 

     
Figure (15): Average Entropy Progress Bar-                  Figure (16): Average Entropy Progress Bar- 

graph Mod Func of [MD4-128] of Little Endian [9]      graph Div Fun of [MD4-128] of Little Endian [9] 

 

7. Conclusions 

This work aimed to acess the performance of traditional 
2Universal Hash functions, recommended 

by (BB84), through the combination of the message digest hash functions with the truly random functions of 

Mod and Div to have Hash-Mod and Hash-Div functions in distilling the secret key in the Privacy 

Amplification. All results were supporting the use of Hash-Mod and Hash-Div over the Perm-Mod and Perm-

Div in rectifying the Entropy behavior of Mod and Div functions. In order to be able to apply the new 

functions, an implementation was made to the standard (BB84) introduced functions as: Mod, Perm-Mod, 

Div and Perm-Div functions. The performance was measured on the basis of Entropy and Information 

Measure. In addition, an implementation was made to boost the performance with new enhancement of Hash-

Mod and Hash-Div functions which reported much enhanced results when being compared to the Entropy 

values of the former functions [9]. 

The study succeeded to categorize three types of simulators, (R=N), (R=N-t) and (R=N-t-S) where 

every one was configurable through configuration parameters. Such variation in parameter configuration 

managed to prove that the three simulators agreed on generating a similar function graph behavior produced 

by experiments. The Mod function preserved an incrementing knee-shaped in every experiment at high (R-

Value) values. Such problem was corrected by permutation that generated an incrementing straight line 

graph. The hashing has generated enhanced incrementing graph that rectified the knee-shaped problem. 

Similarly, the Div function preserved the knee-shaped in every experiment at high (R-Value) values. Such 

problem was corrected by permutation which generated a decrementing straight line graph. The hashing has 

generated enhanced decrementing graph which rectified the knee-shaped problem [9]. 

This paper demonstrated set of experiments execution using a set of customized configuration 

parameters using a small hash function signature size (MD4) through practical investigations in section (6) 

for the three types of simulators. More investigations were applied for another set of customized 

configuration parameters using bigger hash function signature size (RIPEMD320). Both results proved that 

the Mod and Div function implementations had maintained the same function behavior proving the success 

of combing the hash functions with the truly random functions. Throughout the three defined simulators 

which used the message digest hash function (MD4-128) for high (R-Value), the average Entropy progress of 

permutation combined with Mod function and deployed with (R=N-t) showed higher values of (3.93) over 

(R=N) and (R=N-t-S) ones which are closely equal in values. Also, the average Entropy progress of hashing 

combined with Mod function used within (R=N-t) showed higher values of (4.95) over (R=N) and (R=N-t-

S) ones that are nearly equal. The average Entropy progress percentage for Mod function is (1.02 %) [9]. 

Similarly, the average Entropy progress of permutation combined with Div function and deployed 

with (R=N-t) showed once more higher values of (194.88) over (R=N) and (R=N-t-S) ones that were nearly 

the same. Also, the average Entropy progress of hashing combined with Mod function used within (R=N-t) 
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displayed higher values of (198.39) over (R=N) and (R=N-t-S) ones which are nearly equal. The average 

Entropy progress percentage for Div function is (3.51 %). Such behavior of results was maintained when 

deploying higher signature of message digest hash function such as (RIPEMD-320).  

This proves that the hashing effect produced more enhanced Entropy progress over that of 

permutation when combined with Mod or Div functions and can be recommended to improve the Privacy 

Amplification model. Therefore, the use of the Hash-Mod and Hash-Div has influenced the key distillation 

process of the Privacy Amplification phase of (BB84) protocol. Moreover, the performance measure of the 

new functions was remarkable since hashing had improved the Entropy measurements over the permutation 

ones because not only the hashing provides key bits random scattering but also provides key compression. 

The choice of hash functions could be influenced according to the complexity and speed of the selected hash 

function in order to achieve the distillation process in lesser processing time [9]. 

In conclusion, the newly implemented functions were proved to be superior to the standard 

implemented ones in terms that they generated shorter keys with randomized bits with much enhanced 

Entropy than the standard ones that generate keys of same length with randomized bits [9]. 
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