

Institute of Advanced Engineering and Science

w w w . i a e s j o u r n a l . c o m

International Journal of Information & Network Security (IJINS)

Vol.3, No.2, April 2014, pp. 116~127

ISSN: 2089-3299  116

Journal homepage: http://iaesjournal.com/online/index.php/ IJINS

A Survey On Real World Botnets And Detection Mechanisms

Somayeh Soltani
1
, Seyed Amin Hosseini Seno

2
, Maryam Nezhadkamali

1
 and Rahmat Budirato

3

1Computer Emergency Response Team (CERT), Ferdowsi University of Mashhad
2 Departement of Computer Engineering, Ferdowsi University of Mashhad

3
College of Computer Science and Information Technology, Al Baha University, Kingdom of Saudi Arabia

Article Info ABSTRACT

Article history:

Received Mar 15
th

, 2014

Accepted Apr 12
th

, 2014

Mitigating the destructive effect of botnets is a concern of security scholars.

Though various mechanisms are proposed for botnets detection, real world

botnets still survive and do their harmful operations. Botnets have developed

new evasion techniques and covert communication channels. Knowing the

characteristics of real world botnets helps security researchers in developing

more robust detection methods. There are some surveys in the literature that

study botnet detection methods; however they do not advert to real world

botnets a lot. In this paper, we study various aspects of several real world

botnets, i.e. Conficker, Kraken, Rustock, Storm, TDL4, Torpig, Waledac,

Zeus and P2P Zeus. Architecture, protocol, type of infection, communication

interval, attacks and evasion techniques of these botnets are probed in this

paper. Moreover, studies on botnets mitigation and detection techniques that

based on fast flux service networks, domain flux, and drive-by download and

new trends in botnet communication channels are reviewed.

Keyword:

Botnet

Drive-by download

Domain flux

Fast flux service network

Rootkit

Copyright @ 2014 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Second Author,

Departement of Computer Engineering,

Ferdowsi University of Mashhad, Iran

hosseini@um.ac.ir

1. INTRODUCTION

Cyber world encounters serious security threats such as viruses, worms, trojans and botnets. Botnet

can be introduced as the biggest chance for cybercriminals and the biggest challenge ahead of security

researchers. Botnet is a collection of infected machines worldwide which receive commands from their

botmaster and do some illegal actions such as Distributed Denial of Service (DDoS), credential stealing, click

fraud, spam sending, bank account and credit card theft and downloading other malwares.

The communication channel between bots and botmaster is named Command and Control (C&C).

Botnets have developed their C&C channels since their first appearance; while the early botnets were

centralized IRC based, the new ones use peer to peer (P2P) architecture. IRC based botnets are brittle,

because firewall can avoid them by filtering related ports. Totally, centralized botnets suffer from single

point of failure; if the C&C server(s) is blocked by law enforcement, the bot network is useless. The P2P

architecture is a true replacement for C&C communication. Aside from communicating to botmaster, bots

communicate with each other, transferring received commands and new updates from botmaster among each

other.

Botnets use different evasion techniques to hinder detection. Obfuscating or encrypting the binary

code and the transferring messages is one of the most utilized approaches in real world botnets. Fluxing the

IP addresses and domain names of the C&C servers are two techniques for impeding the shutdown attempts.

Hiding the presence of the malicious code in the infected machine using some sort of rootkit techniques is

another method of anti detection.

mailto:hosseini@um.ac.ir

IJINS ISSN: 2089-3299 

A Survey On Real World Botnets And Detection Mechanisms (Somayeh Soltani)

117

Various real world botnets come into existence in recent years. Having detailed information about

them, makes more robust detection mechanisms and vice versa. For example while much of normal

communication between bots in P2P Zeus, P2P Conficker, Kraken and Storm is based on UDP [1-8]

detection techniques presented in [9, 10] filter out UDP flows to reduce the big volume of captured traffic. In

this paper we focus on some of real world botnets and discuss their architectures, types of attacks and evasion

techniques respectively. Moreover various existing detection techniques are described in this survey.

The rest of the paper is organized as follows. Section 2 reviews the related works. An overview of

real world botnets is explained in section 3. Different attacks done by real world botnets are illustrated in

section 4. Section 5 describes various evasion techniques used by botnets to hinder detection and tracing.

Detection techniques are described in section 6. Section 7 explains some new trends in C&C communication

and section 8 concludes the paper.

2. RELATED WORK

Several surveys on botnets are proposed by researchers in [11-14]. The technical report in [11]

presents a comprehensive survey on botnet measurement and detection techniques. Different passive

techniques including packet inspection, analysis of flow records, DNS-based approaches, analysis of spam

records, analysis of application log files, honeypots and evaluation of anti-virus software feedback are

probed. Active detection techniques including sinkholing, infiltration, DNS cache snooping, detecting fast-

flux networks, IRC-

  ISSN: 2089-3299

IJINS Vol. 3, No. 2, April 2014 : 116 – 127

118

of 100 random IP addresses for local network search and another array of 100 IP addresses for global Internet

are generated. Then TCP and UDP scanners try to connect to these IP addresses on some precomputed ports.

When a peer is discovered, a peer session will be established.

Bots communicate with other entities for several reasons. Bots need to communicate to botmaster to

receive commands and binary updates and send sensitive data stolen from the infected machines. In P2P

networks, bots exchange information with each other. For synchronization purposes, bots may connect to

time servers as in Storm botnet [23] or acquire time from some known web sites like google.com as in

Conficker C. These communications usually take place in specific time intervals and make some repetitive

patterns which can be used by analysts for detection purposes. Conficker A queries each of domains

generated by a DGA algorithm every three hours. In Zeus, a message containing main status information

about the zombie such as botID, IP address, bot OS is sent to botmaster every two minutes. Moreover another

message containing stolen data is sent to botmaster every ten minutes [24]. Torpig bots contact every twenty

minutes to their C&C server to upload the stolen data [25]. Bots in P2P Zeus check the responsiveness of

their peers every thirty minutes.

Table 1. Botnets Overview

* Check connectivity

Name
Creation

(Detection

) Date

Architecture Protocol Type of infection
Number of

Peers

Communicatio

n Interval

Number of

Zombies

Conficker
A

November
2008

Centralized
HTTP [16,

17]
MS08­067 exploit

[16, 17]
-

Every 1

minute*, Every
3 hours** [16,

17]

(All
variants)

10.5

million till
2009 [26]

Conficker
B

December
2008

Centralized
HTTP [16,

17]

MS08­067 exploit,

NetBIOS Share, USB

[16, 17]

-

Every 1

minute*, Every
2 hours** [16,

17]

-

Conficker

B++

February

2009
Centralized HTTP [16]

MS08­067 exploit,
NetBIOS Share, USB

[16]

- - -

Conficker
C

March
2009

P2P

TCP,

UDP,
HTTP [3,

4]

Updated from

previous variants [3,

27]

scans the
Internet

looking for

other peers
[3, 4]

- -

Conficker

E
April 2009 P2P

TCP,

UDP,
HTTP [27]

MS08­067 exploit,

NetBIOS Share, USB
[27]

- - -

Kraken
Late 2006

[28]
Centralized

UDP, TCP

[5, 6]

Social Engineering

[5]
- -

400.000 till

2008 [28]

Rustock
Around

2006
P2P [29] HTTP Spam email [30] - -

1.3 million

[31]

Storm
Mid 2006

[32]
P2P [7, 8,

33, 34]

UDP+

Overnet/
eDonkey

[7, 8]

Spam email plus

social engineering

techniques and client-

side vulnerabilities
[7, 32, 33]

100 [8],

290 [7] ***

every 10
minutes [7]

between 1

million and
5 million

[7]

TDL4 2010 P2P

HTTP,
Kad

network

[15]

Drive-by downloads

[35], MS10-092
vulnerability [36]

- -

Over 4.5
million till

2011 [15,

35]

Torpig Centralized HTTP [25]
Drive-by downloads

[25]
-

Every 20

minutes [25]

180.000 till

2009 [25]

Waledac
April 2008

[19]
P2P [19, 20]

HTTP [19,
20]

Spam emails using
social engineering

techniques [19-21] ,

Drive-by downloads
[19]

500 [19] -

90.000

Till 2010

[37]

Zeus 2006 [24]
Centralized

[38]
HTTP [38]

Spam emails using

social engineering

techniques,

Drive-by downloads

[22]

-

Every 2

minutes and 10

min [24]

3.6 million

(US only)

Till 2009

[38]

Zeus

(P2P)

September

2011 [1]
P2P [1, 2]

UDP/TCP

and

HTTP [1,
2]

Spam emails [1] 50 [1]
Every 30

minutes [1]

200.000

[39]

IJINS ISSN: 2089-3299 

A Survey On Real World Botnets And Detection Mechanisms (Somayeh Soltani)

119

** Query the list of domains generated by DGA

*** Number varies based on Strom version

4. REAL WORLD BOTNET ATTACKS

Botmaster spread its malware to different machines worldwide to perform its malicious activities.

Table 2 demonstrates some types of attack have been done by various botnets. Distributed denial of service

attacks are designed to overwhelm the communication bandwidth and computational resources of the victim

server and stopping it from servicing to its normal clients. Storm uses two types of DoS attack, i.e. TCP syn

flood and ICMP ping flood and attacks some anti-spam sites and antivirus web sites [7, 8, 33, 34]. Moreover

Rustock, TDL4, Waledac and P2P Zeus have the DDoS code in their binaries [1, 2, 19, 35, 40].

Malware infects a machine by using spam emails and social engineering techniques which later on

to infect other systems and to disseminate other types of malware. Kraken and Storm are two famous botnet

spammers. Storm in one of its peak day is responsible for 99% of all spam emails seen by a large service

provider [41]. One single Kraken bot has sent up to 500,000 pieces of spam in a day [28]. Rustock, TDL4,

Waledac and Zeus are some other spammer botnets.

Stealing sensitive information from infected machine is one of the common events takes place by

bots. Web site login credentials, cookies, credit cards, banking accounts and passwords are some of important

information which is thieved by botnets. Botnets use different methods to steal aforementioned information.

Torpig steals bank account and credit card information using man-in-the-browser phishing attacks. Torpig

configuration file contains about 300 domains of banks and financial institutions. It also steals a variety of

other personal Information. Zeus which is the largest bank theft botnet, hooks network APIs to steal network

related information.

Other malicious activities are done by different botnets. Zeus botmaster may occasionally ask its

bots to send him a snapshot of the system screen [24]. TDL4 does click fraud which increases the number of

clicks on an advertisement on a site and has benefits for owner of the site [35, 36, 42]. It also does bitcoin

operations [43]. Waledac downloads and installs a ransomware which is a fake antivirus, warning users about

some threats in their systems and inciting them to buy the full version of the antivirus [19, 20]. Zeus installs

CryptoLocker ransomware which encrypts some files on user systems and prompts user to send a ransom in

order to receive the decryption tool [44].

TDL4 is used for malware dissemination; it downloads other malicious programs to the host

computer [15, 35, 36]. Moreover TDL4 searches the system for any competitor’s malware and removes it

[15, 35]. Though having a lot of zombies, Conficker does not perform any serious attack yet. Only Conficker

E includes Waledac which used for spam sending [27].

Table 2. Botnet Attacks

Name DDoS Attacks
Spam

Sending
Password theft

Conficker - - -
Kraken - Yes [5, 6, 28] -

Rustock Yes [40] Yes [45] steal sensitive information [46]
Storm Yes [7, 8, 33, 34] Yes [7, 32, 33] -

TDL4 Yes [35] Yes [35] Yes [35]

Torpig - - Yes [25]
Waledac Yes [19] Yes [19, 20] capture login information [19, 21]

Zeus - Yes [22]
Steal passwords, credentials and

banking information [24]

Zeus

(P2P)
Yes [1, 2] -

steal crypto certificates, steal cookies

[1], Steal banking information [2]

5. REAL WORLD BOTNET EVASION TECHNIQUES

Botnets use various techniques to elude tracing. Table 3 shows some of these techniques including

IP address flux, domain flux, binary obfuscation or encryption, encrypted or obfuscated communication and

rootkit.

IP address fluxing or Fast Flux Service Network (FFSN) is an evasion technique which is used in

some of recent botnets such as Waledac and Storm [7, 20, 34]. FFSN maps a single fully qualified domain

name to different set of IP addresses. These IP addresses belong to infected systems scattered in the world.

Botmaster chooses some of its zombies as front-end servers, setting their IP addresses in the response of DNS

queries in A records. One can see these A records by means of Dig tool which is part of BIND name server

software [47]. Intercepting the C&C channel by these proxy servers, the real hidden server is protected from

  ISSN: 2089-3299

IJINS Vol. 3, No. 2, April 2014 : 116 – 127

120

shutdown attempts. To achieve a secure scheme, a short Time-to-Live (TTL) is considered for each DNS

record and a new set of zombies act as front-end servers.

Domain flux is another evasion technique used wildly in recent botnet such as Kraken, Conficker,

Torpig, TDL4 and P2P Zeus [1-3, 6, 25, 42]. Botmaster changes domain name of C&C server periodically in

order to elude tracking and shutdown attempts. Bots have a Domain Generation Algorithm (DGA) embedded

in their code, which using a seed generates a random domain list. Then bot tries to connect to each of these

domains by sending DNS query. Just one (or a few) of these domains which is recently registered by

botmaster answers the query with IP address of the domain. Other queries are responded with an NXDomain

response.

P2P Zeus generates 1,000 domains per week. Domain generation algorithm first creates a MD5 hash

over concatenation of the year, month, day and domain index, which is used to generate domain names. The

top-level domain (TLD) is selected from one of the six top-level domains and concatenated to the domain

name [1, 2]. Conficker A and B generate 250 domain names per day and use UTC date for seed. Conficker A

selects a TLD randomly from five famous TLD and appended to the domain name. The number of TLDs

increases to eight in Conficker B [16].

In response to collaboration of Microsoft, ICANN and several security team to disable Conficker's

domains [48], Conficker C generates 50,000 random domains per day. The TLD concatenated to each

domain is selected randomly from 110 TLDs. However each bot just sends DNS query to 500 of these

domains. If none of these 500 domains are registered by botmaster, bot sleeps for 24 hours, and then will

generate a new list of 50,000 domains [3]. Kraken uses a random word generator that constructs English-

language alike words containing vowels and consonants properly. The generated word is appended with a

suffix chosen randomly from a list of common nouns, verbs and adjective and adverb suffixes [49].

To harden the analysis of the binary file, botnets use some kind of obfuscation or encryption.

Moreover to enable validating the code, digital signature is appended to it. The binary file in Conficker A is

encrypted using the symmetric stream cipher RC4 with a password which is constructed by SHA-1 hash of

the binary file. Then this encrypted file is signed by RSA algorithm. The signature is appended to the

encrypted binary. Bots after receiving the binary file will validate it to ensure that it is signed by Conficker

authors [3, 16]. In Conficker B, authors use a new presented hashing algorithm, i.e. MD-6 instead of SHA-1

[3]. Binary files in P2P Zeus are signed with an RSA-2048 signature of the MD5 hash of the plaintext data

and are encrypted with RC4 algorithm using a hardcoded key plus XOR encryption [1].

Encrypting the communication messages hinders detection of botnets. Bots of Torpig periodically

contact the C&C server to upload stolen data. A simple obfuscation mechanism using XOR and base64

encoding protects this communication [25]. P2P Zeus has various types of messages, some of which are

protected using different encryption and signing techniques. For example, TCP data request is encrypted with

RC4 using the identifier of the recipient as the key. Botmaster may choose one bot as proxy by issuing the

proxy announcement message which is signed by RSA-2048 [1].

Botnets use rootkit techniques to hide its presence on a system, steal sensitive data from the system

and disable security products. User mode API hookings including IAT hooking and inline hooking are the

simplest rootkit techniques. IAT hooking takes place by exchanging one (or more) entry of import address

table of a binary with the address of malicious code. For example to hide malware related files and

directories in Windows Explorer, malware can change the IAT entry of NtQueryDirectoryFile in explorer.exe

process and replace it with malicious code which filter out the malware files and directories. Inline hooking

takes place by directly changing the API function. For the above example it is sufficient for the malware to

patch code of NtQueryDirectoryFile in Ntdll.dll and divert its execution somewhere in the code to malicious

code [50, 51].

User mode API hooking though simple, involves injecting a DLL to every process that need the

changes and may not work for some API functions. Kernel mode rootkits are more robust but need more

precise programming; any bug found in the code yields system crash. One simple kernel mode hooking

involves exchanging the SSDT table entries with the malicious code. This hooking needs more programming

efforts compared to user mode API hooking. All user modes and kernel modes API hooking can be detected

by rootkit revealers like Gmer [52].

Runtime patching the native APIs is another rootkit technique which is detected harder. Though

Microsoft protects some data structures like SSDT from changing in 64-bit operating systems using Kernel

Patch Protection (KPP) or PatchGuard technique [53], malware can bypass this protection technique. Direct

Kernel Object Manipulation (DKOM) is the most sophisticated rootkit method used by some malware. Even

if online rootkit revealer like Gmer [52] cannot detect this type of rootkit, offline digital forensic tools like

Volatility [54] are powerful enough to detect this rootkit [51].

Real world botnets use some kind of rootkit to hide their processes and resources or disable security

products or steal information. Zeus hooks some network related APIs to steal information before sending

IJINS ISSN: 2089-3299 

A Survey On Real World Botnets And Detection Mechanisms (Somayeh Soltani)

121

through the network [24]. Torpig uses a rootkit which replace the system's Master Boot Record (MBR) and

executes at boot time [25]. Storm performs kernel mode hooking to hide malware files and drivers [7, 8, 32,

34].

To remain undetected, real world botnets do some self defenses. Conficker Disables security

products, Disables AutoUpdate, Blocks DNS lookups related to security applications, deactivates safeboot

mode and disables Windows' firewall protection of certain high-order UDP and TCP ports [3, 16, 17]. Storm

disables security products and windows file protection. It can detect debuggers and virtual machines and

accordingly falls into an infinite loop [7, 34]. TDL4 bypasses PatchGuard and the Windows code integrity

mechanism and performs anti debugging checks [36, 55]. P2P Zeus injects its code into other processes'

memory, therefore hides its network activities [2].

Table 3. Botnet Evasion Techniques

Botnet

Name

Fast Flux

Service Network

Domain

Flux

Binary
Encryption,

Obfuscation and

signature

Encrypted

Communication

Rootkit

(API Hooking)

Conficker No Yes [3, 16]
RC4, MD6, SHA-

1, RSA [3, 16]
Yes [3]

Yes (User Mode API Hooking) [3,

16, 17]

Kraken No Yes [6, 49] Yes [5, 28] Yes [5] Yes [5]

Rustock No No No TLS [56] Yes (Kernel mode rootkit) [46]

Storm Yes [7, 34] No TEA [34] -
Kernel rootkit for hiding malware

files and drivers [7, 8, 32, 34]

TDL4 Yes [15] Yes [42] RC4 [55]

Base62, proprietary

encryption using XOR
[15]

an MBR based rootkit named

Alureon (32bit/64bit rootkit) [15]

Torpig No Yes [25] -
XOR, base64 encoding

[25]

an MBR based rootkit named

Mebroot [25]

Waledac Yes [20] No
Bzip2,AES [19,

20]

Bzip2, AES-128-CBC,

Base64, RSA keys [20]
-

Zeus No No XOR, RC4 [57] XOR, RC4 [24, 38, 57]
User mode API hooking to steal

sensitive information [24]

Zeus

(P2P)
No Yes [1, 2]

RSA-2048, RC4,

XOR, MD5 [1]

RC4, RSA-2048, MD5,

XOR, zlib [1]
-

6. DETECTION MECHANISMS

In this section various techniques for detection of IP and domain flux, drive-by download attacks

and presence of bots in a single host or in a monitored network are examined.

6.1 Detecting fast flux service networks

The first study that introduces the FFSN is [58]. Holz et al. [59] probe the matter and propose a

metric for detection of FFSN. According to their investigation, about 30% of domains advertised in spam are

FFSNs. They compare FFSN with two other techniques, Round Robin DNS (RRDNS) [60] and Content

Distribution Network (CDN). RRDNS is a load balancing technique used by large websites which returns a

list of A records in response to DNS queries. The response list is cycled in a round-robin manner for each

query. CDN is an advance load balancing method which distributes data among different far apart servers.

While servers in a CDN scatter around the world, the servers in a RRDNS are located in a same place. These

two techniques are similar to FFSN in the number of A records in DNS responses. Also the CDN technique is

similar to FFSN because of its low TTLs.

[59] presents some distinguishing parameters to detect FFSNs from benign domains: 1) nA, the

number of unique A records returned in all DNS queries. 2) nNS, the number of nameserver (NS) records in

one single query. 3) nASN, the number of unique ASNs for all A records. They represent a metric named

fluxiness () to distinguish FFSNs from CDNs. nsingle is the number of A records returned in a

single DNS query. For benign domains without the usage of CDNs, this metric is equal to one. But for CDNs

and FFSNs, the fluxiness metric is greater than one.

[59] also proposes another metric based on above parameters named flux-score using a weight

vector w and a bias term b:

A flux-score f(x)>b indicates an instance of a FFSN and f(x)<b correspond to benign domains.

Another study in this field is FluXOR [61], a system to monitor and detect FFSNs. FluXOR extracts

nine distinguishing features from domains which categorized in three groups: 1) features relating to domain

name, 2) features relating to availability of the networks and 3) features relating to heterogeneity of the

agents.

http://mtc.sri.com/Conficker/addendumC/#firewall-disablement
http://en.wikipedia.org/wiki/Kernel_Patch_Protection
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/RSA_(algorithm)
http://en.wikipedia.org/wiki/Master_boot_record
http://en.wikipedia.org/wiki/Rootkit
http://en.wikipedia.org/wiki/Master_boot_record
http://en.wikipedia.org/wiki/Rootkit

  ISSN: 2089-3299

IJINS Vol. 3, No. 2, April 2014 : 116 – 127

122

FluXOR is a system with three components: 1) Collectors which collect suspicious hostnames from

emails, 2) Monitors which extract some distinguishing features from domains. Once a domain is tagged as

FFSN, the monitor tries to find the proxy servers (i.e. botnet zombies) by acting like a zombie and querying

the DNS records. 3) A detector which combines the aforementioned features using a naïve Bayesian

classifier. The study shows 7.8% of hostnames collected from spam emails monitored by FluXOR for a

month were associated with FFSNs.

Flux-score [59] and FluXOR [61] use some temporal metrics such as the number of total A records

or the number of autonomous systems for detection of FFSNs. Temporal metrics though accurate, need

considerable time (i.e. the TTL of A record) to decide about the domain, which delay the detection.

Meanwhile the bot harder dictates many of his malevolent orders to his zombies and uses some other

techniques like domain flux to exchange the domain to a new registered one. Researches in [62-64] propose

some real time detection schemes.

Spatial Snapshot Fast-Flux Detection (SSFD) [62] is a detection scheme which maps IP addresses in

DNS responses to geographical coordinates using hostip.info [65]. SSFD defines two spatial measures,

spatial uniform distribution estimation and spatial service relationship evaluation, for detecting FFSNs.

Spatial uniform distribution estimation is an entropy-based function which estimates the uniform geographic

distribution of proxy servers (i.e. zombies). Because this measure cannot differentiate CDNs from FFSNs, the

service relationship measure is presented. The authors of [62] acclaim that the real time SSFD system is more

effective and efficient than flux-score based detection system [59].

In [64], a Genetic-based ReAl-time DEtection (GRADE) system is proposed. GRADE defines two

new measures, the Entropy of Domains of Preceding Nodes (E-DPNs) and the Standard Deviation of Round

Trip Time (SD-RTT) between the analyzer system and all A record host. Analyzing the results of the

traceroute command, GRADE estimates the heterogeneity of the domains of the preceding nodes of all A

record hosts. The preceding domains of A records associated with CDNs and RRDNSs will exhibit a high

degree of homogeneity. But the preceding domain of A records relating to FFSNs will show considerable

heterogeneity. For benign domains using CDN technique, the SD-RTT metric is small. But for FFSNs

because of the scatter model of proxy servers, the SD-RTT is a large value.

GRADE uses four metrics nA, nASN, E-DPN and SD-RTT and plugs these metrics into a linear

decision function. To determine the best set of weights for the decision function, a genetic algorithm is

employed. Experimental results show that GRADE classifies domains in a few second and with high

accuracy. The authors of [64] claim that GRADE achieves higher detection accuracy compared to flux-score

[59], FFBD [63] and SSFD [62].

6.2 Detecting domain flux
One straightforward solution to detect domains generated algorithmically by a botnet, is to reverse

engineer the malware executable which is resource and time intensive and is not always feasible [49, 66].

Antonakakis et al. [66] present a detection system called Pleiades based on the number of NXDomain

responses created in querying the DGA-generated domains. They test their system in a large ISP network and

cluster NXDomains based on their similar syntactic features and the number of overlapping compromised

machines that query them. Then (if possible) they assign these clusters to models of known botnet DGAs.

Malicious automatically generated domain names are detected in [67] using Stateful-SBB. A dataset

of benign and malicious domain names is used in training and test phase. Different classification algorithms

including Naïve-Bayes, C4.5, AdaBoost, SBB and Stateful-SBB are applied to identify malicious domain

names. Since classifiers other than Stateful-SBB require the data set to be feature-based, 17 different features

are extracted for each domain name. The Stateful-SBB classifier and C4.5 classifier provide high accuracy on

classification. Though Stateful-SBB classifies domains without requiring any a priori knowledge, however

other classifiers require a set of features.

6.3 Detecting drive-by download attacks

Drive-By Download (DBD) attack is a growing type of attack which takes place when a user visits a

web page containing malicious codes. The Malicious code is silently downloaded to the user system and

executed without the user consent. Often a drive-by download attack is done in three phases. 1) Shellcode

injection phase: that takes place through a malicious active client-side content (such as JavaScript) within a

malicious site or a legal site which is exploited by an attacker, 2) Shellcode execution phase: which uses a

vulnerability in the browser or its plug-in components to detour the control flow to the shellcode and execute

it and 3) Malware download and install: which silently downloads the malware (bot) code from remote

server, store it in the system and execute it on the host operating system.

Researches in [68-72] have probed this type of infection and propose solutions to mitigate it.

BLADE [68] for example is an attack-agnostic system that prevents drive-by malware installation. Placing

IJINS ISSN: 2089-3299 

A Survey On Real World Botnets And Detection Mechanisms (Somayeh Soltani)

123

BLADE as a dynamic loadable driver into the OS can successfully prevent the execution of binaries which

are downloaded without user consent.

BLADE consists of five components. Screen Parser monitors kernel windowing events to detect

appearance of a download consent dialog (a dialog box for asking permission from user) and notify the

Supervisor. To track user interaction with this dialog box (clicking Yes or No button), the Hardware-Event

Tracer is invoked by the Supervisor. Hardware-Event Tracer intercepts mouse and keyboard input events to

detect those that relate to the download consent dialog. Correlator matches a downloaded file to a tuple (u,p)

where u is the URL from which file is downloaded and p is the file system path where file is saved. The I/O

Redirector establishes a secure zone, a location where all binaries downloaded by the browser and its child

processes are placed. Execution of files in this area is prohibited by blocking memory-section

synchronizations. Files that are downloaded by the user consent, subsequently moved out of the secure zone.

Authors of [68] have evaluated the proposed scheme for some common browsers against some

active malicious sites. BLADE successfully detects and blocks all DBD infections with zero false positives.

Egele et.al. [70] propose a DBD detection scheme which is based on detection of shellcode in

JavaScript strings. Binary representation of shellcode is typically assigned to JavaScript string variables in

the address space of the browser. To facilitate the execution of shellcode, attacker put multiple instances of

the shellcode combined by a NOP sledge in different strings. All strings that are allocated by the JavaScript

interpreter are monitored for presence of shellcode using the libemu library [73]. Starting from each character

of the string, libemu checks whether there is a sequence of valid instructions in the string. These checks are

done before a vulnerability can be abused to divert control flow to the shellcode. If the system finds such a

string, the corresponding script is terminated.

The proposed scheme has been implemented by extending Mozilla Firfox and its JavaScript engine,

SpiderMonkey [74]. The implemented scheme can detect drive-by downloads that exploit memory corruption

vulnerabilities and use JavaScript code for launching the exploit with zero false positive. However, the

scheme cannot detect and protect other types of DBDs.

In [69], an anomaly-based approach for detection of drive-by download attacks which use malicious

JavaScript code is presented. First some distinguishing features in a DBD attack life cycle are defined. Using

these features and some machine-learning techniques, the system can identify anomalous JavaScript code.

The features are related to different phases of an attack, namely redirection and cloaking, deobfuscation,

environment preparation and exploitation.

Number and target of redirection, browser personality, ratio of string definitions and uses, number

of dynamic code executions, length of dynamically evaluated code, number of bytes allocated through string

operations, number of likely shellcode strings, number of instantiated plugins, values of parameters in

method calls and sequences of method calls are ten features proposed by [69]. The implemented tool called

JSAND is available online in [75] that analyzes and gives detailed reports for URLs or files sent by any user.

However, the proposed scheme does not prevent or block any attacks.

6.4 Botnet detection

In this section several botnet detection techniques are presented. We study recent works on botnet

detection that are not discussed in previous surveys [11, 12].

First, we discuss a work from Huang [76]. This work presents a host-based detection system based

on network failure model. The author assumes that network failures is an inherent property of botnet traffic

which results from unavailability of C&C server, a peer or the attacked target. Huang’s work shows that

network failure patterns of normal, peer-to-peer and botnet traffic are distinguishable and classifies them

using the C4.5 decision tree classifier. The system workflow consists of 1) collecting numerous benign, peer-

to-peer and bot traces, 2) filtering out non-failure traces, 3) extracting features from failure flows and 4)

building the classifier. To filter out non-failure traffic, this work defines possible type of failures, most of

which relate to transport protocols, TCP and UDP. For example receiving a TCP reset (RST) or an ICMP

unreachable in response to a TCP SYN, is considered as failure. In the feature extraction phase, this work

presents thirty four features of failure flows which can be classified into six categories: certain types of

failures, average interval between failures, total number of failures, ratio of distinct destination port numbers,

ratio of distinct destination IP addresses and average number of failures per destination IP address. The

author believes that the proposed model can detect bot hosts with more than 99% accuracy.

The second work is a botnet detection method based on group activities of bots as presented in [23].

The work is an improvement of the authors' previous works [77, 78]. The detection scheme named BotGAD

works by capturing group activities from DNS traffic. Though Botnet group activities are more shown in

centralized botnets, some P2P botnets may have the same activities. DNS traffic while having a small portion

of network traffic, enables botnet detection at its early stages, maybe prior to performing attacks.

  ISSN: 2089-3299

IJINS Vol. 3, No. 2, April 2014 : 116 – 127

124

Botnet group activities include C&C server or update server lookup as well as victim lookup. In

centralized model, bots frequently send some messages to C&C server. For example, HTTP based bots

periodically send HTTP requests to server to receive commands from it. To resolve the IP address(es) of the

server domain, generally DNS queries are sent. When performing malicious behavior like DDoS attacks,

spam distribution and click frauds, DNS queries are sent to find the IP addresses of victims. While group

activities are seen in normal communication, they have some distinguishable characteristics in botnets, which

are used in [23] for detection mechanism. Pattern Based Network Security Using Semisupervised Learning

that intelligently is able to detect botnet activities in a network is introduced in [79]. A Botnet Prevention

Strategies for Social Network users is discussed in [80].

Lastly, EFFORT [81] is a host-network cooperated framework for detection of bot process on a

system and employs five modules. The first module, Human-process-network correlation, finds a suspicious

process which does not have keyboard or mouse events and heavily creates DNS traffics. If a process tagged

as suspicious by this module, it will be sent to other modules for further analysis. The second module,

Process reputation analysis, determines the reputation of a process mostly by detecting the reputation of the

entities (servers/peers) whom the process contact. Reputation information of a domain is collected by 1)

detecting some anomaly features in its registration information, 2) investigating its previous records in well-

known blacklists and 3) asking a search engine like google. The third module, system resource exposure

analysis, monitors resource access activities of a suspicious process. While bots may modify critical registry

keys, create a large number of sockets in a short time, access and modify in system folders; these actions are

not seen in benign processes. The fourth module, network information trading analysis, determines the

information gain/loss for suspicious process. Unlike normal processes which act as clients in network

communication and gather information, bots mostly send data (stolen data, massive spam and DDoS packets)

to other entity. The fifth module, correlation engine, determines the weights of the decision of each module

and makes the final decision whether the process is bot or not.

7. NEW TRENDS IN C&C COMMUNICATION

A new trend in botnet design is to hide the communication channel between bots and botmaster.

Stegobot [82] for example is a social network botnet which uses covert channel for communication. First

infection of Stegobot is through social-malware attacks. Emails seem to be sent from friends of victim (social

phishing) having the malicious code embedded in the attachment or persuading social links which refer to

sites having malicious code are some form of social-malware propagations. Once the malware is deployed on

a machine, it can be propagated by embedding the malicious payload in any email attachment sent by user.

Communication between bots and botmaster is through social network image sharing behavior of

members. Stegobot uses image steganography to hide the presence of communication. The botmaster

commands and the bots stolen information are embedded in the images share by the user of the system. Just

viewing the image by other members of the social network, transfers the image to their system. If the system

is infected by bot, the embedded information is extracted and subsequent operations are done. It is sufficient

for botmaster to embed its command in an image. It will be scattered through the social network overlay and

reached to its bots.

VoIP may be used as covert C&C channel between bots and botmaster [83] as in MoshiMoshi

botnet [84]. Voice network is used to transfer commands. In this way, bots can be controlled individually or

as a group. Since voice traffic is not monitored a lot, detection of VoIP botnet is unlikely. Different from

IRC-based botnets which can be prevented by blocking related ports, phone calls cannot be avoided.

Using URL Shortening Services (USSes) for hiding C&C channel is proposed in [85]. USSes such

as bit.ly [86] and is.gd [87] give a shortened URL or alias of a long URL. Botmaster can stealthy

communicate with the bots using aliases generated by USSes. Alias flux, a new technique proposed by Lee

et.al. [85], is based on changing the aliases associated with IP addresses of C&C servers. Botmaster

periodically register obfuscated IP addresses of C&C servers to USSes. Obfuscated IP address is needed to

make it similar to a legitimate URL and to hide the IP address of C&C from USSes. In the case of USSes

which support custom aliases (aliases selected by user), an alias generation algorithm is used by both

botmaster and bots. Giving the date information to this algorithm, n different aliases is generated which will

be registered by botmaster into USSes. Bots that are wanting to communicate with C&C servers, use this

algorithm to retrieve custom aliases and then query one of these aliases from USSes. In the case of not

supporting custom aliases, alias generation algorithm is replaced whit a list of registered aliases.

The botnet threat may spread to mobile smart phones and generate Mobile botnet phenomenon. Hua

et.al. [88] probe this matter and claim that human mobility facilitates the propagation of commands. Two

C&C communication based on SMS flooding algorithm and Bluetooth technology is presented. Bot transfers

http://www.iaesjournal.com/online/index.php/IJINS/article/view/704

IJINS ISSN: 2089-3299 

A Survey On Real World Botnets And Detection Mechanisms (Somayeh Soltani)

125

commands by sending SMSs to its neighbor bots sporadically. To achieve stealth, group messaging is

avoided. Whenever smart phones are close enough, they transfer commands using Bluetooth.

8. CONCLUSION

Today cyber world encounters various botnets that try to perform malicious activities without the

knowledge of bot system owners. Knowing the various aspects of these botnets helps users in detecting

abnormal behavior of their systems. Moreover if security researchers who develop botnet detection

mechanism be aware of real world botnet characteristics, they can offer more accurate products. In this paper

important aspects of some real world botnets are probed.

Botnets use different methods to infect systems worldwide. Different attack vectors used by botnets

are explained. Detecting drive-by download attacks, one of the popular attack vectors is deliberated in this

work. Various evasion techniques used by botnets to delay and hinder shutdown attempts are described.

Besides, some solutions to detect these evasion techniques are reviewed. New technologies used by botnets

in transferring commands are introduced which may attract researchers in the field.

REFERENCES
[1] Andriesse D, Bos H. "An Analysis of the Zeus Peer-to-Peer Protocol". Report. 2013.

[2] "ZeuS-P2P monitoring and analysis". Report. CERT Polska, 2013.

[3] Porras P, Saidi H, Yegneswaran V. "Conficker C Analysis". Report. SRI International, 2009.

[4] Porras P, Saidi H, Yegneswaran V. "Conficker C P2P Protocol and Implementation". Report. SRI International,

2009.

[5] Mushtaq A. "Kraken Botnet – A detailed analysis" 2008. Available from:

http://www.fireeye.com/blog/technical/botnet-activities-research/2008/04/kraken-botnet-1.html.

[6] Royal P. "Analysis of the Kraken Botnet": Damballa; 2009. Available from:

https://www.damballa.com/downloads/d_pubs/KrakenWhitepaper.pdf.

[7] Porras P, Saidi H, Yegneswaran V. "A Multi-perspective Analysis of the Storm (Peacomm) Worm". Report. SIR

International, 2007.

[8] Stewart J. "Storm Worm DDoS Attack" 2007. Available from:

http://web.archive.org/web/20071013133954/http://secureworks.com/research/threats/view.html?threat=storm-

worm.

[9] Chang S, Daniels TE, editors. "P2P Botnet Detection using Behavior Clustering & Statistical Tests". Proceedings of

the 2nd ACM workshop on Security and artificial intelligence (AISec '09); 2009.

[10] Yu X, Dong X, Yu G, Qin Y, Yue D, Zhao Y. "Online Botnet Detection Based on Incremental Discrete Fourier

Transform". JOURNAL OF NETWORKS. 2010;5.

[11] Plohmann D, Gerhards-Padilla E, Leder F. "Botnets: Detection, Measurement, Disinfection & Defence". Report.

The European Network and Information Security Agency (ENISA), 2011.

[12] Silva SSC, Silva RMP, Pinto RCG, Salles RM. "Botnets: A survey". Computer Networks. 2013;57:378–403.

[13] Liu J, Xiao Y, Ghaboosi K, Deng H, Zhang J, editors. "Botnet: classification, attacks, detection, tracing, and

preventive measures". Proceedings of the 2009 Fourth International Conference on Innovative Computing,

Information and Control (ICICIC'09); 2009.

[14] Zhang L, Yu S, Wu D, Watters P, editors. "A Survey on Latest Botnet Attack and Defense". Proceedings of the

2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications

(TRUSTCOM '11); 2011.

[15] Golovanov S, Soumenkov I. "TDL4 – Top Bot" 2011. Available from:

http://www.securelist.com/en/analysis/204792180/TDL4_Top_Bot.

[16] Porras P, Saidi H, Yegneswaran V. "An Analysis of Conficker's Logic and Rendezvous Points". Report. SRI

International, 2009.

[17] Porras P, Saidi H, Yegneswaran V, editors. "A Foray into Conficker’s Logic and Rendezvous Points". Proceedings

of the 2nd USENIX conference on Large-scale exploits and emergent threats: botnets, spyware, worms, and more

(LEET'09); 2009.

[18] "MS08-067: Vulnerability in Server service could allow remote code execution". Available from:

http://support.microsoft.com/kb/958644.

[19] Tenebro G. "W32.Waledac Threat Analysis": Symantec. Available from:

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/W32_Waledac.pdf.

[20] Baltazar J, Costoya J, Flores R. "Infiltrating Waledac Botnet’s Covert Operations: Effective Social Engineering,

Encrypted Http2p Communications, And Fast-Fluxing Networks". Report. Trend Micro.

[21] Pilici S. "Remove TrojanDownloader: Win32/Waledac.AK (Virus Removal Guide)" 2013. Available from:

http://malwaretips.com/blogs/trojan-downloader-win32-waledac-ak-removal/.

[22] Nahorney B, Falliere N. "Trojan.Zbot": Symantec. Available from:

http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99.

[23] Choi H, Lee H. "Identifying botnets by capturing group activities in DNS traffic". Computer Networks.

2012;56:20-33.

  ISSN: 2089-3299

IJINS Vol. 3, No. 2, April 2014 : 116 – 127

126

[24] Stone-Gross B, Cova M, Cavallaro L, Gilbert B, Szydlowski M, Kemmerer R, et al., editors. "Your botnet is my

botnet: analysis of a botnet takeover". Proceedings of the 16th ACM conference on Computer and communications

security (CCS '09); 2009.

[25] Riccardi M, Pietro RD, Palanques M, Vila JA. "Titans’ revenge: Detecting Zeus via its own flaws". Computer

Networks. 2013;57:422-35.

[26] "Calculating the Size of the Downadup Outbreak" 2009. Available from: http://www.f-

secure.com/weblog/archives/00001584.html.

[27] "Conficker Working Group: Lessons Learned" 2010. Available from:

http://www.confickerworkinggroup.org/wiki/uploads/Conficker_Working_Group_Lessons_Learned_17_June_201

0_final.pdf.

[28] Higgins KJ. "New Massive Botnet Twice the Size of Storm" 2008. Available from:

http://www.darkreading.com/attacks-breaches/new-massive-botnet-twice-the-size-of-storm/d/d-id/1129410?

[29] "Defeating Rustock In the Courts". Available from:

http://www.microsoft.com/security/sir/story/default.aspx#!rustock_defeating.

[30] SPAMfighter News. "New Rustock Botnet Trying to Expand Itself" 2008. Available from:

http://www.spamfighter.com/News-10711-New-Rustock-Botnet-Trying-to-Expand-Itself.htm.

[31] Greene J. "Microsoft hands Rustock botnet case over to FBI" 2011. Available from:

http://www.cnet.com/news/microsoft-hands-rustock-botnet-case-over-to-fbi/.

[32] Landesman M. "Storm Botnet". Available from: http://antivirus.about.com/od/virusdescriptions/p/stormbotnet.htm.

[33] Holz T, Steiner M, Dahl F, Biersack E, Freiling F, editors. "Measurements and Mitigation of Peer-to-Peer-based

Botnets: A Case Study on StormWorm". Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and

Emergent Threats Article No 9 (LEET'08); 2008.

[34] Boldewin F. "Peacomm.C - Cracking the nutshell.zip" 2007. Available from: http://www.reconstructer.org/.

[35] Rouse M. "TDL-4 (TDSS or Alureon)" 2011. Available from: http://searchsecurity.techtarget.com/definition/TDL-

4-TDSS-or-Alureon.

[36] ESET Team. "TDSS part 1: The x64 Dollar Question" 2011. Available from:

http://resources.infosecinstitute.com/tdss4-part-1/.

[37] Goodin D. "Waledac botnet 'decimated' by MS takedown" 2010. Available from:

http://www.theregister.co.uk/2010/03/16/waledac_takedown_success/.

[38] Binsalleeh H, Ormerod T, Boukhtouta A, Sinha P, Youssef A, Debbabi M, et al. "On the Analysis of the Zeus

Botnet Crimeware Toolkit". Eighth Annual International Conference on Privacy Security and Trust (PST)2010.

[39] Rossow C, Andriesse D, Werner T, editors. "SoK: P2PWNED — Modeling and Evaluating the Resilience of Peer-

to-Peer Botnets". In Proceedings of the 34th IEEE Symposium on Security and Privacy, IEEE S&P 2013; 2013.

[40] Stewart J. "Rustock DDoS Attack". Available from: http://www.joestewart.org/rustock-ddos.html.

[41] Gaudin S. "Storm Worm Erupts Into Worst Virus Attack In 2 Years" 2007. Available from:

http://www.informationweek.com/storm-worm-erupts-into-worst-virus-attack-in-2-years/d/d-id/1057418?

[42] Antonakakis M, Demar J, Stevens K, Dagon D. "Unveiling the Network Criminal Infrastructure of TDSS/TDL4

DGAv14: A case study on a new TDSS/TDL4 variant". Available from:

https://www.damballa.com/downloads/r_pubs/Damballa_tdss_tdl4_case_study_public.pdf.

[43] Paz RD. "TDL4 Worm Component Employs Bitcoin Mining" 2011. Available from:

http://blog.trendmicro.com/trendlabs-security-intelligence/the-worm-tdl4-and-botcoin-miners/.

[44] Alintanahin K. "CryptoLocker: Its Spam and ZeuS/ZBOT Connection" 2013. Available from:

http://blog.trendmicro.com/trendlabs-security-intelligence/cryptolocker-its-spam-and-zeuszbot-connection/.

[45] "Biggest spammer? The Rustock botnet" 2008. Available from:

http://www.securityinfowatch.com/press_release/10549446/biggest-spammer-the-rustock-botnet.

[46] "Backdoor.Rustock". Available from: http://www.symantec.com/security_response/writeup.jsp?docid=2006-

011309-5412-99&tabid=2.

[47] "BIND The most widely used Name Server Software". Available from: https://www.isc.org/downloads/bind/.

[48] "Microsoft Collaborates With Industry to Disrupt Conficker Worm" 2009. Available from:

http://www.icann.org/en/news/announcements/announcement-2-12feb09-en.htm.

[49] Yadav S, Reddy AKK, Reddy ALN, Ranjan S, editors. "Detecting Algorithimically Generated Malicious Domain

Names". Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (IMC '10); 2010.

[50] Blunden B. "The Rootkit Arsenal Escape and Evasion in the Dark Corners of the System": Wordware Publishing,

Inc.; 2009.

[51] Ligh MH, Adair S, Hartstein B, Richard M. "Malware Analyst's Cookbook and DVD: Tools and Techniques for

Fighting Malicious Code": Wiley Publishing, Inc.; 2011.

[52] "GMER- Rootkit Detector and Remover". Available from: http://www.gmer.net/.

[53] "Kernel patch protection: frequently asked questions" 2007. Available from: http://msdn.microsoft.com/en-

us/library/windows/hardware/dn613955%28v=vs.85%29.aspx.

[54] "Volatility an advanced memory forensics framework". Available from: https://code.google.com/p/volatility/.

[55] Rusakov V. "TDSS. TDL-4" 2011. Available from:

https://www.securelist.com/en/analysis/204792157/TDSS_TDL_4.

[56] "Beware Botnet's Return, Security Firms Warn". Available from:

http://www.pcworld.com/article/192668/beware_botnets_return_security_firms_warn.html.

[57] Wyke J. "What is Zeus?". Report. Sophos, 2011.

IJINS ISSN: 2089-3299 

A Survey On Real World Botnets And Detection Mechanisms (Somayeh Soltani)

127

[58] Salusky W, Danford R. "Know Your Enemy: Fast-Flux Service Networks" 2007. Available from:

http://www.honeynet.org/papers/ff.

[59] Holz T, Gorecki C, Rieck K, Freiling FC, editors. "Measuring and Detecting Fast-Flux Service Networks".

Proceeding of the 15th Annual Network & Distributed System Security Symposium (NDSS'08); 2008.

[60] Brisco T. "RFC 1794: DNS support for load balancing" 1995. Available from: http://www.ietf.org/rfc/rfc1794.txt.

[61] Passerini E, Paleari R, Martignoni L, Bruschi D, editors. "FluXOR: detecting and monitoring fast-flux service

networks". Proceedings of the 5th Conference on Detection of Instrusions and Malware & Vulnerability

Assessment (DIMVA'08); 2008.

[62] Huang S-Y, Mao C-H, Lee H-M, editors. "Fast-flux Service Network Detection Based on Spatial Snapshot

Mechanism for Delay-free Detection". Proceedings of the 5th ACM Symposium on Information, Computer and

Communications Security (ASIACCS '10).

[63] Hsu C-H, Huang C-Y, Chen K-T, editors. "Fast-flux bot detection in real time". Proceedings of the 13th

international conference on Recent Advances in Intrusion Detection (RAID'10); 2010.

[64] Lin H-T, Lin Y-Y, Chiang J-W. "Genetic-based Real-time Fast-Flux Service Networks Detection". Computer

Networks. 2013;57:501-13.

[65] "HOSTIP Project. My IP Address Lookup and GeoTargeting Community Geotarget IP Project – what country, city

IP addresses map to". Available from: http://www.hostip.info/.

[66] Antonakakis M, Perdisci R, Nadji Y, editors. "From Throw-Away Traffic to Bots: Detecting the Rise of DGA-

Based Malware". Proceedings of the 21st USENIX conference on Security symposium (Security'12); 2012.

[67] Haddadi F, Kayacik HG, Zincir-Heywood AN, Heywood MI, editors. "Malicious Automatically Generated Domain

Name Detection Using Stateful-SBB". Proceedings of the 16th European conference on Applications of

Evolutionary Computation (EvoApplications'13); 2013.

[68] Lu L, Yegneswaran V, Porras P, Lee W, editors. "BLADE: An Attack-Agnostic Approach for Preventing Drive-By

Malware Infections". Proceedings of the 17th ACM conference on Computer and communications security

(CCS'10); 2010.

[69] Cova M, Kruegel C, Vigna G, editors. "Detection and Analysis of Drive-by-Download Attacks and Malicious

JavaScript Code". Proceedings of the 19th international conference on World wide web (WWW'10); 2010.

[70] Egele M, Wurzinger P, Kruegel C, Kirda E, editors. "Defending Browsers against Drive-by Downloads: Mitigating

Heap-spraying Code Injection Attacks". Proceedings of the 6th International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment (DIMVA'09); 2009.

[71] Zhang J, Seifert C, Stokes JW, Lee W, editors. "ARROW: GenerAting SignatuRes to Detect DRive-By

DOWnloads". Proceedings of the 20th international conference on World wide web (WWW '11); 2011.

[72] Xu K, Yao D, Ma Q, Crowell A. "Detecting Infection Onset With Behavior-Based Policies". 5th International

Conference on Network and System Security (NSS '11)2011. p. 57-64

[73] "libemu – x86 Shellcode Emulation". Available from: http://libemu.carnivore.it/.

[74] "SpiderMonkey". Available from: https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey.

[75] "Wepawet". Available from: http://wepawet.cs.ucsb.edu/.

[76] Huang C-Y. "Effective bot host detection based on network failure models". Computer Networks. 2013;57:514–25.

[77] Choi H, Lee H, Lee H, Kim H, editors. "Botnet Detection by monitoring group activities in dns traffic".

Proceedings of the IEEE International Conference on Computer and Information Technology (CIT '07); 2007.

[78] Choi H, Lee H, Kim H, editors. "BotGAD: detecting botnets by capturing group activities in network traffic".

Proceedings of the Fourth International ICST Conference on COMmunication System softWAre and middlewaRE

(COMSWARE '09); 2009.

[79] Vinod K Pachghare, Vaibhav K Khatavkar, Parag A Kulkarni, Pattern Based Network Security Using

Semisupervised Learning, International Journal of Information and Network Security (IJINS),Vol 1 No 3,

2012:228-234.

 [80] Nishikant C Dhande, Botnet Prevention Strategies for Social Network users: Cases and Remedies International

Journal of Informatics and Communication Technology (IJ-ICT), Vol 2 No 1, 2013:46-50.

[81] Shin S, Xu Z, Gu G. "EFFORT: A new host–network cooperated framework for efficient and effective bot malware

detection". Computer Networks. 2013;57:2628–42.

[82] Nagaraja S, Houmansadr A, Piyawongwisal P, Singh V, editors. "Stegobot: a covert social network botnet".

Proceedings of the 13th international conference on Information hiding (IH '11); 2011.

[83] Grant NM, Shaw JI. "Chapter 8 VoIP Bots ". "Unified Communications Forensics": Syngress.

[84] "moshimoshi Open-source VoIP Bot". Available from: http://code.google.com/p/moshimoshi/.

[85] Lee S, Kim J. "Fluxing botnet command and control channels with URL shortening services". Computer

Communications. 2013;36:320–32.

[86] "bitly". Available from: https://bitly.com/.

[87] "is.gd". Available from: http://is.gd/.

[88] Hua J, Sakurai K. "Botnet command and control based on Short Message Service and human mobility". Computer
Networks. 2013;57:579–97.

http://www.iaesjournal.com/online/index.php/IJINS/article/view/704
http://www.iaesjournal.com/online/index.php/IJINS/article/view/704
http://www.iaesjournal.com/online/index.php/IJINS
http://www.iaesjournal.com/online/index.php/IJICT/article/view/1819
http://www.iaesjournal.com/online/index.php/IJICT
http://www.iaesjournal.com/online/index.php/IJICT

