

Institute of Advanced Engineering and Science

International Journal of Information & Network Security (IJINS)

Vol.3, No.4, August 2014, pp. 273~284

ISSN: 2089-3299 273

Journal homepage: http://iaesjournal.com/online/index.php/ IJINS

w w w . i a e s j o u r n a l . c o m

A Faster and Efficient Image Encryption Algorithm Using

Color Object, Byte Confusion and Diffusion

Parameswaran Bose*
* Software Engineer and Researcher

Article Info ABSTRACT

Article history:

Received Jun 12
th

, 2014

Revised Aug 20
th

, 2014

Accepted Aug 26
th

, 2014

There are lots of efficient algorithms proposed for image encryption by using

chaotic maps in the literature. But time is the main constraint for encrypting

and decrypting the images. Even a small image of 256*256 resolution is

taking more time for encryption and decryption. Because the computation

takes more time for generating permutation sequence from the chaotic

sequence elements by using linear search. In this paper we propose a new,

faster and efficient algorithm for color images to generate the permutation

sequence from the chaotic sequence elements by using the binary search

method. The proposed algorithm produces a cipher of the test images that has

good confusion and diffusion properties and was verified to provide a high

security level. The results of several experiments show that the proposed

algorithm for image cryptosystems provides an efficient and secure approach

to real-time image encryption and transmission.

Keyword:

Chaotic System

Chaotic Map

Image Encryption

Permutation Sequence

Pixel Permutation

Copyright @ 2014 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Parameswaran Bose,

#15, Anna Poorna House,

12
th

 Cross, Indira Gandhi Street,

Udaya Nagar, Bangalore – 500 016, Karnataka, India.

Email: parameswaran.gri@gmail.com

1. INTRODUCTION

The rapid growth of internet allows us to transmit large files such as image, video and audio files.

Since the internet is open to everyone, security has been the major issue to protect the data from the

unauthorized access. Discrete chaotic dynamical systems are nonlinear dynamic behaviour, they are

pseudorandom, sensitivity to the initial conditions and generate highly complicated signals by a simple

recursive procedure. Chaotic systems are widely used in communications, optimization, control and image

processing. To predict the behaviour of such systems, one should have sufficient knowledge about the initial

conditions. Some of the important properties of the chaotic systems are as follows. Chaotic maps are

deterministic, so they are characterised by mathematical equations. They are unpredictable, non-linear and

highly sensitive to initial conditions. Even a slight change in the starting point can lead to significant different

outcomes. Chaos based systems are useful to encrypt and decrypt all the image types since its approach is

carried out by the confusion(shuffling) and diffusion with respect to the pixel position.

Chaos theory is not new to computer science and has been used for many years in cryptography.

One type of encryption, secret key or symmetric key, relies on diffusion and confusion, which is modelled

well by chaos theory [1]. Another type of computing, DNA computing, when paired with chaos theory, offers

a more efficient way to encrypt images and other information [2]. Robotics is another area that has recently

benefited from chaos theory. Instead of robots acting in a trial-and-error type of refinement to interact with

their environment, chaos theory has been used to build a predictive model [3].

Chaos is a definitive and similar random procedure which appears in a nonlinear system [4, 5].

Chaos has been widely used in physics [6], biology [7], medical technology [8], synchronous control [9],

mailto:parameswaran.gri@gmail.com

 ISSN: 2089-3299

IJINS Vol. 3, No. 4, August 2014 : 273 – 284

274

complex network [10], electrical engineering [11], and so on. Since the chaos-based encryption algorithm

was first proposed in 1989 [12], many cryptographic protocols have emerged in the scientific literature [13,

14]. Chaos has many important properties, such as aperiodicity, topological transitivity, sensitive dependence

on initial conditions, random-like behaviours, etc. [15, 16]; so, chaos based encryption algorithms have

proved to be superior for encrypting images [17]. Traditional image encryption algorithms have 2 phases:

confusion and diffusion. For example Gao and Chen [18] use matrix transformation and chaotic maps for

shuffling and diffusion, respectively. Some only have one phase. For example, Wang et al.[19] proposed an

image encryption algorithm which combines the shuffling and diffusion stage into one stage. But the

algorithm in Ref.[20] states that the processing should be more than 3 rounds.

In this paper we proposed a new permutation sequence based color object transformation algorithm

which is faster and efficient in encrypting and decrypting images by confusion and diffusion. We are

experimenting the time complexity for generating the permutation sequence by our binary search method

with several pictures of various resolutions. Finally we encrypt and decrypt various images with different

resolutions by using the permutation sequence. And also the security measures are calculated with the

original, encrypted and the decrypted images.

2. CHAOTIC SYSTEM

A chaotic dynamical system is an unpredictable deterministic and uncorrelated system the exhibits

noise like behaviour through its sensitive dependence on its initial conditions, which generates sequences

similar to pseudorandom sequence. The chaotic dynamics have been successfully employed to various

engineering applications such as automatic control, signals processing and watermarking. Since the signals

generated from chaotic dynamic systems are noise like super sensitive to initial conditions and have spread

flat spectrum in the frequency domain, it is advantageous to carry messages with this kind of signal that is

wide band and has high communication security. For this reason numerous engineering applications of secure

communication with chaos have been developed.

2.1. Chaotic Sequences

A chaotic sequence is non converging and non periodic sequence that exhibits noise like behaviour

through its sensitive dependence on its initial condition. A large number of uncorrelated, random like, yet

deterministic and reproducible signals can be generated by changing initial value. These sequences so

generated by chaotic systems are called chaotic sequences. Chaotic sequences are real valued sequences. This

real valued sequence can be converted into integer valued sequence. This generated sequence makes it

effective for pixel permutation and diffusion that can be used for image encryption and decryption.

2.2. Generation of Chaotic Sequences

The simplest and the most widely studied nonlinear dynamic systems capable of exhibiting chaos is

the logistic map. The logistic map is defined as follows:

xn+1 = µ xn (1-xn), xn € (0, 1), µ € [0, 4] (1)

Where xn is an independent variable; µ is the control parameter of logistic map; n = 1, 2, 3... When

3.5699456 ˂ µ ≤ 4 and xn € (0, 1), this logistic map is chaotic and can be used to generate a sequence up to

length n.

2.3. Generation of Permutation Sequence

Chaotic dynamical systems are nonlinear dynamic behaviour, they are pseudorandom, sensitivity to

the initial conditions. So they have used widely to generate the sequence of real number, By using those real

sequence number and their sorted value a pseudorandom sequence can be generated. This pseudorandom

sequence can be used for image pixel permutation. In this section we are generating the pseudorandom

sequence in two ways; one is with the Linear Search method which is followed by many of the researchers in

the literature and another method with the Binary Search which is proposed by us. Finally we are comparing

the time complexity to generate the pseudorandom sequence by both the methods.

2.3.1. Generation of Permutation Sequence by Linear Search

Step 1. Generate the real chaotic sequence of length n by using the Equation 1, and store it in an one

dimensional array as {a1, a2, a3, ………., an}. Since this is not sorted in nature, this array will be called as

unsorted real chaotic sequence array.

Step 2. Take a clone of this unsorted real chaotic sequence array and sort it in ascending order. Store

the sorted real sequence values in an one dimensional array as {b1, b2, b3, ………., bn}. Since this is sorted in

nature, this array will be called as sorted real chaotic sequence array.

IJINS ISSN: 2089-3299

A Faster and Efficient Alg. for Img Encryption Using Color Object, Byte Con. & Diff. (Parameswaran Bose)

275

Step 3. Iterate through all the sequence elements one by one in the sorted real chaotic sequence array

and compare each element with the unsorted real chaotic sequence array. If the sequence

element value is equal find the index position of the sequence element in the unsorted real chaotic sequence

array and store it in an one dimensional array as {c1, c2, c3, ………., cn}.

In detail the code which is used to get the permutation sequence by using linear search is as follows,

public int[] getChaosSequenceArrayIndex(Double[] sequenceArray, Double[] sortedSequenceArray){

 int indexArray[] = new int[sortedSequenceArray.length];

 for(int i=0; i<sortedSequenceArray.length; i++){

 Double number = sortedSequenceArray[i];

 for(int j=0;j<sequenceArray.length;j++){

 if(number == sequenceArray[j]){

 indexArray[i] = j;

 break;

 }

 }

 }

 return indexArray;

}

The resultant integer array is called as permutation sequence and mainly used for pixel permutation. Since

the linear search is iterating through two for loops, the time taken to generate the permutation sequence is too

high. And obviously it affects the time of encryption and decryption of the image. If the size of the image is

too large automatically the iteration size of the two for loops will be increased. And automatically the time

taken to generate the permutation sequence will be increased. So finally the time taken for encryption and

decryption of the image will be too high.

 Figure 1.cn for µ = 3.8000001 Figure 2. cn for µ = 3.8000002

The generation of the permutation sequence is the vital part of our proposed algorithm. Figure 1 shows the

permutation sequence for the length n = 100 and the initial parameters µ = 3.8000001 and 0x = 0.8. The

integer sequence is varied a lot in its value by changing the initial parameters value. The major advantage of

this permutation sequence is, it is random in nature and defined in a specific range. If the initial seed value is

changed then it drastically changes the sequence. Figure 2 shows the permutation sequence for the length

n = 100 and the initial parameters µ = 3.8000002 and 0x = 0.8.

2.3.2. Generation of Permutation Sequence by Binary Search

Step 1. Generate the real chaotic sequence of length n by using the Equation 1, and store it in an one

dimensional array as {a1, a2, a3, ………., an}. Since this is not sorted in nature, this array will be called as

unsorted real chaotic sequence array.

Step 2. Take a clone of this unsorted real chaotic sequence array and sort it in ascending order. Store

the sorted real sequence values in an one dimensional array as {b1, b2, b3, ………., bn}. Since this is sorted in

nature, this array will be called as sorted real chaotic sequence array.

Step 3. Iterate through all the sequence elements one by one in the unsorted real chaotic sequence

array and find the index position of each element with the sorted real chaotic sequence array by binary search

and store it in an one dimensional array as {c1, c2, c3, ………., cn}. In detail the code which is used to get the

permutation sequence by using binary search is as follows,

public int[] getChaosSequenceArrayIndex(Double[] sequenceArray, Double[] sortedSequenceArray){

 ISSN: 2089-3299

IJINS Vol. 3, No. 4, August 2014 : 273 – 284

276

 int indexArray[] = new int[sortedSequenceArray.length];

 for(int i=0; i<sequenceArray.length; i++){

 Double number = sequenceArray[i];

 indexArray[i] = Arrays.binarySearch(sortedSequenceArray, number);

 }

 return indexArray;

}

Since we are iterating through only one for loop and using the powerful mechanism binary search to find the

index position of each element, the time taken to generate the permutation sequence is very less. And

obviously it takes very less time to encrypt and decrypt the image. Even though the size of the image is too

large, it won’t take more time to generate the permutation sequence. So finally the time taken for the

encryption and decryption of the image by this method will be very less when we are comparing the time

with linear search.

Figure 3. cn for µ = 3.9999 Figure 4. cn for µ = 4.0

Figure (3) shows the permutation sequence for the length n = 100 and the initial parameters µ = 3.9999 and

0x = 0.8. The integer sequence is varied a lot in its value by changing the initial parameters value. The major

advantage of this permutation sequence is, it is random in nature and defined in a specific range. If the initial

seed value is changed then it drastically changes the sequence. Figure (4) shows the permutation sequence for

the length n = 100 and the initial parameters µ = 4.0 and 0x = 0.8.

2.3.3. Comparison of time to generate the permutation sequence

 In this section we are investigating the time complexity to generate the permutation sequence by

linear search and as well as by the binary search method with various images. The results of the time taken to

generate the permutation sequence are presented in the Table 1. So from the investigation it clearly shows

that the time taken to generate permutation sequence by binary search method is very less when we are

comparing with linear search method.

Table 1. Time taken to generate the permutation sequence for various images
Image Name Width*Height No of Pixels Linear Search(sec) Binary Search(sec)

Meeting.png 256*256 65536 7.4 0.132

Peppers.png 512*512 262144 117.29 0.596

Lion.png 1024*1024 1048576 1894.009 3.246

Car.png 1920*1080 2073600 7272.65 6.855

3. PROPOSED ALGORITHM FOR ENCRYPTION AND DECRYPTION

 Image encryption techniques try to convert an image to a pepper and salt image. Where image

decryption retrieves the original image from the encrypted one. The algorithm starts with the generation of

the chaotic sequence using the logistic map then the permutation sequence by using the chaotic sequence is

calculated. This permutation sequence is mainly used to change the pixel position of the image to get the

encrypted image. Also we can create the diffusion sequence by using the chaotic sequence. The diffusion

sequence which is called by the name masking sequence is used to change the pixel’s Red, Green, Blue color

byte values. So permuting the pixel position and changing the color byte values of the pixel for many rounds

will finally produce a salt and pepper image. This image is called as Encrypted Image. It is very safe to

transmit the encrypted image through the public channel. And the parameters to decrypt the encrypted image

can be transmit through various channels.

3.1. Encryption Algorithm

IJINS ISSN: 2089-3299

A Faster and Efficient Alg. for Img Encryption Using Color Object, Byte Con. & Diff. (Parameswaran Bose)

277

Step 1. Load the image and get the width and height as M, N and calculate n = M*N.

Step 2. Generate a permutation sequence co using µco and cox .

Step 3. Generate a permutation sequence pr using µpr and prx .

Step 4. Generate a permutation sequence pg using µpg and pgx .

Step 5. Generate a permutation sequence pb using µpb and pbx .

Step 6. Generate a masking sequence mr using µmr and mrx , where mri = (| mri | / max(| mri |))*255.

Step 7. Generate a masking sequence mg using µmg and mgx , where mgi = (| mgi | / max(| mgi |))*255.

Step 8. Generate a masking sequence mb using µmb and mbx , where mbi = (| mbi | / max(| mbi |))*255.

Step 9. Read the color objects (pixels) from image and put it in to a one dimensional array p.
Step 10. Rearranging the elements in the color objects array p by using the permutation sequence co.

Step 11. Split the Red, Green, Blue color bytes from the resultant color objects array from step 10, and

 store them in to 3 one dimensional arrays r, g, b.

Step 12. Execute a Bitwise XOR operation between the elements of r with mr.

Step 13. Execute a Bitwise XOR operation between the elements of g with mg.

Step 14. Execute a Bitwise XOR operation between the elements of b with mb.

Step 15. Rearranging the elements in the array r from step 12 by using the permutation sequence pr.

Step 16. Rearranging the elements in the array g from step 13 by using the permutation sequence pg.

Step 17. Rearranging the elements in the array b from step 14 by using the permutation sequence pb.

Step 18. Create the color objects by r, g, b from the step 15, 16, 17 and assign it to p.

Step 19. Repeat the steps 10 to 18 for R rounds.

Step 20. Create the encrypted image with the resultant color bytes array.

3.2. Decryption Algorithm

Step 1. Load the Encrypted Image and get the width and height as M, N and calculate n = M*N.

Step 2. Generate a permutation sequence co using µco and cox .

Step 3. Generate a permutation sequence pr using µpr and prx .

Step 4. Generate a permutation sequence pg using µpg and pgx .

Step 5. Generate a permutation sequence pb using µpb and pbx .

Step 6. Generate a masking sequence mr using µmr and mrx , where mri = (| mri | / max(| mri |))*255.

Step 7. Generate a masking sequence mg using µmg and mgx , where mgi = (| mgi | / max(| mgi |))*255.

Step 8. Generate a masking sequence mb using µmb and mbx , where mbi = (| mbi | / max(| mbi |))*255.

Step 9. Read the color objects (pixels) from Encrypted Image and put it in to a one dimensional array p.

Step 10. Split the Red, Green, Blue color bytes from the color objects array p, and store them in to 3 one

 dimensional arrays r, g, b.

Step 11. Rearranging the elements to its proper place in r by using the permutation sequence pr.

Step 12. Rearranging the elements to its proper place in g by using the permutation sequence pg.

Step 13. Rearranging the elements to its proper place in b by using the permutation sequence pb.
Step 14. Execute a Bitwise XOR operation between the elements of r from step 11 with mr.

Step 15. Execute a Bitwise XOR operation between the elements of g from step 12 with mg.

Step 16. Execute a Bitwise XOR operation between the elements of b from step 13 with mb.

Step 17. Create the color objects array dp by the arrays r, g, b from the step 14, 15, 16.

Step 18. Rearranging the elements in the array dp to its proper place by using the permutation sequence

 co, and assign it to the color objects array p.

Step 19. Repeat the steps 10 to 18 for R rounds.

Step 20. Create the decrypted image with the resultant color bytes array.

4. TOOLS USED FOR EXPERIMENT

 ISSN: 2089-3299

IJINS Vol. 3, No. 4, August 2014 : 273 – 284

278

 The tools what we are using for the experiment will satisfy the modern world’s requirement. In this

section we are listing the hardware and software tools that we are using for the experiment. The hardware and

the software tools are the latest and the software tools are open source that are freely available in the software

industry.

4.1. Hardware Used

 A Hewllet-Packard Laptop with the 3
rd

 generation Intel Core i5-3230M processor with a speed of

2.60 GHz, and the RAM capacity is 4GB. The machine is installed with the operating system 64 bit

Microsoft Windows 8 Single Language Edition.

4.2. Java Language

 Java is a computer programming language that is concurrent, class-based, object-oriented, and

specifically designed to have as few implementation dependencies as possible. It is intended to let application

developers "write once, run anywhere" (WORA), meaning that code that runs on one platform does not need

to be recompiled to run on another. Java applications are typically compiled to bytecode (class file) that can

run on any Java virtual machine (JVM) regardless of computer architecture. Java is, as of 2014, one of the

most popular programming languages in use, particularly for client-server web applications, with a reported 9

million developers. The language derives much of its syntax from C and C++, but it has fewer low-level

facilities than either of them. The version of the Java Development Kit used for the implementation of the

proposed algorithm is jdk1.7.0_45.

4.3. JavaFX Image Ops API

JavaFX is a software platform for creating and delivering rich internet applications (RIAs) that can

run across a wide variety of devices. JavaFX applications could run on any desktop that could run Java SE,

on any browser that could run Java EE, or on any mobile phone that could run Java ME. Image Ops, an API

that enables us to read and write raw pixels within our JavaFX applications. In our implementation we used

JavaFX Image Ops API, Release 2.2.4 to read pixel from images, write pixels to images, and create

snapshots.

4.4. IntellijIDEA

IntelliJ IDEA is a Java Integrated Development Environment (IDE) by JetBrains, available as an

Apache 2 Licensed community edition and commercial edition. It is often simply referred to as "IDEA" or

"IntelliJ". In a report by Infoworld organization in 2010, IntelliJ got the highest test center score out of the 4

Top Java Programming Tools : Eclipse, IntelliJ IDEA, NetBeans, and Oracle JDeveloper. The first version of

IntelliJ IDEA was released in January 2001, and at the time was one of the first available Java IDE with

advanced code navigation and code refactoring capabilities integrated. Google is now developing Android

Studio, a new open source Android Development IDE, based on the open source community edition of

IntelliJ IDEA.

4.5. JFreeChart

JFreeChart is an open-source framework for the programming language Java, which allows the

creation of a wide variety of both interactive and non-interactive charts. JFreeChart supports a number of

various charts, including combined charts: X-Y charts (line, spline and scatter). Pie charts, Gantt charts, Bar

charts are also possible. Various specific charts (wind chart, polar chart, bubbles of varying size, etc.). It is

possible to place various markers and annotations on the plot. JFreeChart also works with GNU Classpath, a

free software implementation of the standard class library for the Java programming language.

5. EXPERIMENTAL RESULT

Now we provide some experimental results to illustrate the performance of the proposed chaotic

cryptosystem with various images with different resolutions. We select the initial and control parameters as,

µco = 3.9867473654678, µmr = 3.9867473667854, µmg = 3.9877473654678, µmb = 3.9867473654876,

µpr = 3.8867473667854, µpg = 3.9867473544678, µpb = 3.9867437654876, R = 100, cox = 0.834567234,

mrx = 0.835567234, mgx = 0.836567234, mbx = 0.834567432, prx = 0.845567234, pgx = 0.836657234,

pbx = 0.854367432. According to the proposed algorithm the encrypted images are shown in the following

figures.

IJINS ISSN: 2089-3299

A Faster and Efficient Alg. for Img Encryption Using Color Object, Byte Con. & Diff. (Parameswaran Bose)

279

 Figure 5. Meeting.png Figure 6. EncryptedMeeting.png

 Figure 7. Peppers.png Figure 8. EncryptedPeppers.png

 Figure 9. Lion.png Figure 10. EncryptedLion.png

Figure 11. Car.png Figure 12. EncryptedCar.png

6. SECURITY ANALYSIS

 ISSN: 2089-3299

IJINS Vol. 3, No. 4, August 2014 : 273 – 284

280

In order to demonstrate that the proposed cryptosystem is secure against most common attacks,

detailed security analyses of the proposed image encryption scheme are carried out, including key space

analysis, statistical analysis and sensitivity analysis with respect to the key and plaintext.

6.1. Key Space Analysis

It was experimentally verified that for the sensitivity of the cryptosystem with respect to the control

parameters is around 10
-16

. On the other hand, the sensitivity with respect to the initial conditions was also

experimentally measured as 10
-15

. Having in mind that the encryption of every color component depends on

each other and the selection of the keys of every color component is independent from the others. The key

space is calculated by the control parameters µco, (µmr, µmg, µmb), (µpr, µpg, µpb) and the initial parameters

, (, ,), (, ,)co mr mg mb pr pg pbx x x x x x x that we used in our experiment for encrypting and decrypting the image.

K = (10
16

*10
16

*10
16

) * (10
15

*10
15

*10
15

) = 10
93

, this satisfies the security requirement related to the

resistance against brute-force attacks. Once a cryptosystem has been designed, the next step is to test it in

order to elucidate if it is really secure and efficient. This aim is very difficult to fulfil, since there is no

standard framework to examine the quality of a cryptosystem. In other words, it is not possible to be totally

sure about the invulnerability of our cryptosystem. Nevertheless, we have to be sure that the cryptosystem is

secure against the best-known attacks. This is the goal of this section, along with the evaluation of the

cryptosystem’s performance.

6.2. The Number of Encryption Rounds

 The number of encryption rounds R not only conditions the key sensitivity of the cryptosystem, but also

its performance. In this sense, as R increases, the diffusion process is amplified and, in a similar manner, the

encryption/decryption speed is decreased. In order to elude a timing-attack based on the relationship between

the encryption/decryption speed and R, this parameter has been considered as a design parameter and not

being part of the secret key. Its value has to be chosen carefully to fulfill a great level of security and a

moderate value of the encryption/decryption time. To do so, a random image and the image resulting from

the random modification of one of its pixels are encrypted using a random value for the key and different

values for R. In this sense, the values of the Number of Pixels Change Rate or NPCR and the Unified

Average Changing Intensity or UACI (see 6.3 section for the definition of both concepts) between the

resulting cipher-images with respect to r has been measured, and confirming that a good level of NPCR and

UACI is reached for round R.

6.3. Differential Attack Analysis

 Generally speaking, an opponent may make a slight change (e.g., modify only one pixel) of the

encrypted image to observe the change in the result. In this way, we may be able to find out a meaningful

relationship between the plain image and the cipher image. This is known as the differential attack. However,

if one minor change in the plain image can cause a significant change in the cipher image, with respect to

diffusion and confusion, then the differential attack would become very inefficient and useless. The proposed

cryptosystem can ensure two ciphered images different completely, even if there is only one bit difference

between plain images. We have done differential analysis by calculating the NPCR (Net Pixel Change Rate)

and UACI (Unified Average Changing Intensity) for several images. Here are the formulas:

,
(,)

 *1 00%
*

i j
D i j

NPCR
M N

 , (2)

1 2

,

 (,) (,) 1
 *100%

* 255i j

c i j c i j
UACI

M N

 (3)

Where D(i, j) represents the difference between c1(i, j) and c2(i, j). If c1(i, j) = c2(i, j) then D(i, j) = 0,

otherwise D(i, j) = 1. For an 8-bit grey image, the expected estimates are NPCRE = 99.6094% and

UACIE = 33.4635%. We have done plaintext sensitivity analysis (differential analysis) by calculating the

NPCR and UACI for plain-image Meeting, Peppers, Lion, and Car. The results of NPCR and UACI for the

tested images are shown in the following figures respectively. It is clear that the NPCR and UACI values

remain in the vicinity of the expected values. So, the proposed image encryption technique shows extreme

sensitivity on the plaintext. Also, Table 2 shows the average values of NPCR and UACI for the plain-image

Meeting, Peppers, Lion, and Car. We can find that the mean NPCR is over 99% and the mean UACI is over

33%. The results show that the proposed algorithm is very sensitive to tiny changes in the plain image; even

IJINS ISSN: 2089-3299

A Faster and Efficient Alg. for Img Encryption Using Color Object, Byte Con. & Diff. (Parameswaran Bose)

281

if there is only one bit difference between two plain images, the encrypted images will be different

completely. Thus, the algorithm is robust against differential attack.

Figure 13. NPCR for 100 Rounds for Meeting.png Figure 14. UACI for 100 Rounds for Meeting.png

Figure 15. NPCR for 100 Rounds for Peppers.png Figure 16. UACI for 100 Rounds for Peppers.png

Figure 17. NPCR for 100 Rounds for Lion.png Figure 18. UACI for 100 Rounds for Lion.png

Figure 19. NPCR for 100 Rounds for Car.png Figure 20. UACI for 100 Rounds for Car.png

 ISSN: 2089-3299

IJINS Vol. 3, No. 4, August 2014 : 273 – 284

282

Table 2. The NPCR and UACI of Encrypted images

Image Name
NPCR% UACI%

Red Green Blue Red Green Blue

Meeting.png 99.5636 99.51935 99.609375 33.242992 32.5194 40.246376

Peppers.png 99.62616 99.62616 99.611664 28.919258 33.993042 33.8869

Lion.png 99.60194 99.59593 99.60585 38.9613 38.511105 41.09514

Car.png 99.61454 99.61381 99.608025 41.842316 38.461365 38.937805

6.4. Correlation coefficient of two adjacent pixels

To test the correlation between two adjacent pixels in plain image and the cipher image, all pairs of

two-adjacent pixels (in vertical, horizontal, and diagonal direction) from plain image and cipher image were

selected and the correlation coefficients were calculated by using the following formulas:

1

1
()

L

i

i

E x x
L

 ,
2

1

1
() ()

L

i

i

D x x E x
L

 ,
1

1
(,) () ()

L

i i

i

Conv x y x E x y E y
L

(,)

() ()
xy

Conv x y

D x D y
 (4)

Where x and y are the Red, Green, Blue values of two-adjacent pixels in the image and xy is the correlation

coefficient of two adjacent pixels. The test results are shown in Table 3, 4, 5, 6, 7, and 8. From the following

tables it can be seen that the encryption scheme satisfies zero co correlation, which is of high-level security.

Compared with the algorithms proposed in the literature, it shows superior performance.

Table 3. The Correlation Coefficient of two adjacent pixels (Vertical)

Image Name
Vertical

Red Green Blue

Meeting.png 0.95476997 0.93699350 0.9320784

Peppers.png 0.96450365 0.97740924 0.9609231

Lion.png 0.98069614 0.96738845 0.9464552

Car.png 0.97309950 0.97803110 0.9810139

Table 4. The Correlation Coefficient of two adjacent pixels (Horizontal)

Image Name
Horizontal

Red Green Blue

Meeting.png 0.9577724 0.93973200 0.93301260

Peppers.png 0.9584898 0.97797270 0.96468280

Lion.png 0.9735432 0.95384425 0.92447490

Car.png 0.9871292 0.99145055 0.99249136

Table 5. The Correlation Coefficient of two adjacent pixels (Diagonal)

Image Name
Diagonal

Red Green Blue

Meeting.png 0.92875385 0.9007650 0.89332783

Peppers.png 0.95073680 0.9623896 0.94063574

Lion.png 0.96461070 0.9350809 0.89814460

Car.png 0.96743520 0.9739547 0.97816220

Table 6. The Correlation Coefficient of two adjacent pixels (Vertical)

Image Name
Vertical

Red Green Blue

EncryptedMeeting.png 0.005568304 0.0030425778 0.0007291584

EncryptedPeppers.png -0.0023794845 -0.0025698487 0.0034875246

EncryptedLion.png -0.0017586248 0.0017701627 0.0012972517

EncryptedCar.png -0.0012235832 -0.0003417274 0.00018416268

Table 7. The Correlation Coefficient of two adjacent pixels (Horizontal)

IJINS ISSN: 2089-3299

A Faster and Efficient Alg. for Img Encryption Using Color Object, Byte Con. & Diff. (Parameswaran Bose)

283

Image Name
Horizontal

Red Green Blue

EncryptedMeeting.png 0.00085462653 0.005135012 0.0059428816

EncryptedPeppers.png 0.007242696 0.004915961 0.003594824

EncryptedLion.png 0.0005232745 0.000529739 -0.000009191621

EncryptedCar.png -0.0029038102 0.00012893182 0.00023931605

Table 8. The Correlation Coefficient of two adjacent pixels (Diagonal)

Image Name
Diagonal

Red Green Blue

EncryptedMeeting.png -0.002212585 0.00694622 0.0027108332

EncryptedPeppers.png -0.00270758 0.0003726096 -0.002960476

EncryptedLion.png 0.0007904043 0.0010226489 -0.0012095304

EncryptedCar.png -0.0009900243 0.0011542992 0.0013351511

6.5. Key Sensitivity Analysis

 Key sensitivity is an essential property for any good cryptosystem, which ensures the security of the

cryptosystem against the brute-force attacks. The encrypted image produced by the cryptosystem should be

sensitive to the secret key. That is to say, of the attacker uses two slightly different keys to decrypt the same

plain image, the two encrypted images should be completely independent of each other. Recall that all the

images are encrypted and decrypted with the initial parameters as given in the experiment result. Now we

attempt to decrypt the encrypted images with different keys. Given that there is a change in the value of µco

(eg., µco = 3.9867473654679) which is slightly different from the encryption key, the resultant decrypted

images are as follows. Obviously the decrypted images produced by using a slightly different key are

completely different from the original one. It should be noted that other experimental results including

individual changes in the value of (µmr, µmg, µmb), (µpr, µpg, µpb) and the initial parameters

, (, ,), (, ,)co mr mg mb pr pg pbx x x x x x x can be implemented in the same way.

 Figure 21.DecryptedMeeting.png Figure 22.DecryptedPeppers.png Figure 23. DecryptedLion.png

Figure 24.DecryptedCar.png

7. CONCLUSION

 ISSN: 2089-3299

IJINS Vol. 3, No. 4, August 2014 : 273 – 284

284

 This paper proposes a faster and efficient symmetric cryptographic system using logistic map to

encrypt 24-bit color image. We can see that the proposed cryptosystem can process any size of image.

Security analysis and experimental results demonstrated the effectiveness of the proposed scheme. The key

space is large enough to resist brute-force attacks. Statistical analysis shows that the scheme can well protect

the image from the statistical attack. The scheme possesses high sensitivity to plain image and key, so it has a

good ability to resist differential attack. With high-level security, it can be used in secure image

communications.

ACKNOWLEDGEMENTS

The Author would like to thank everyone who helped to make this research as a successful one.

REFERENCES
[1] Wang, Xingyuan, Zhao and Jianfeng, "An improved key agreement protocol based on chaos", Communication

Nonlinear Science Numerical Simulation, vol. 15, pp. 4052-4057, 2012.

[2] Babaei, Majid, "A novel text and image encryption method based on chaos theory and DNA computing", Natural

Computing, vol. 12, pp. 101-107, 2013.

[3] Nehmzow, Ulrich and Keith Walker, "Quantitative description of robot-environment interaction using chaos

theory", Robotics and Autonomous Systems, vol. 53, pp. 177-193, 2005.

[4] Liu Y.J., Zheng Y.Q, "Adaptive robust fuzzy control for a class of uncertain chaotic systems", Nonlinear Dynamics,

vol. 57, pp. 431-439, 2009.

[5] Han Q., Liu C.X., Sun L. and Zhu D.R., "A fractional order hyperchaotic system derived from a Liu system and its

circuit realization", Chinese Physics, vol. 22(2), 2013.

[6] Weidenmuller H.A., Mitchell G.E.,"Random matrices and chaos in nuclear physics", nuclear structure. Rev. Mod.

Phys, vol.81(2), pp. 539-589, 2009.

[7] Lesne. A, "Chaos in biology", Riv. Di Biol, vol. 99(3), pp. 467-481, 2006.

[8] Kawashima. M., "Terminal care (1): chaos brought about by the progress of modern medical technology",

Kangogaku Zasshi, vol. 49(10), pp. 1092-1095, 1985.

[9] Zhu. D.R., Liu, C.X., Yan, B.N., "Control and synchronization of a hyperchaotic system based on passive control",

Chinese Physics, vol. 21(9), 090509, 2012.

[10] Lu, L., Luan, L., Meng, L., Li, C.R. "Study on spatiotemporal chaos tracking synchronization of a class of complex

network", Nonlinear Dynamics, vol. 70(1), pp. 89-95, 2012.

[11] Liu, C.X., Lu, J.J. "A novel fractional-order hyperchaotic system and its circuit realization", International Journal

of Modern Physics, vol. 24(10), pp. 1299-1307, 2010.

[12] Matthes, R., "On the derivation of a chaotic encryption algorithm", Cryptologia, vol. 13(1), pp. 29-42, 1989.

[13] Huang, X.L., "Image encryption algorithm using chaotic chebyshev generator", Nonlinear Dynamics, vol. 67(4),

pp. 2411-2417, 2012.

[14] Zhang, L.Y., Li, C.Q., "Cryptanalyzing a chaos-based image encryption algorithm using alternate structure",

Journal of System Software, vol. 85(9), pp. 2077-2085, 2012.

[15] Wang, X.Y., Zhao, J.F., "A new image encryption algorithm based on chaos", Optics Commun, vol. 285(5), pp.

562-566, 2012.

[16] Lian, S.G., "A block cipher based on chaotic neural networks", Neurocomputing, vol. 72(4-6), pp. 1296-1301,

2009.

[17] Hussain, I., Shah, T., "Application of S-box and chaotic map for image encryption", Math. Comput. Model, vol.

57(9-10), pp. 2576-2579, 2013.

[18] Gao, T.G., Chen, Z.Q., "Image encryption based on a new total shuffling algorithm", Chaos Solitons Fractals, vol.

38(1), pp. 213-220, 2008.

[19] Wang, Y., Wong, K.W., Liao, X.F., Chen, G.R., "A new chaos-based fast image encryption algorithm", Applied

Soft Computing, vol. 11(1), pp. 514-522, 2011

[20] Gonzalo Alvarez and Shujun Li, "Some basic cryptographic requirements for chaos-based cryptosystems",

International Journal of Bifurcation and Chaos, vol. 16, no. 8, pp. 2129-2151, 2006.

BIBLIOGRAPHY OF AUTHOR

Parameswaran Bose has received his M.Sc (Information Technology) degree from Gandhigram

Deemed University, Gandhigram, India in 2002. Presently he is working as a software Engineer.

He has ten years of working experience in Java, J2EE and has hands on experience in many

frameworks. He worked with many Enterprise Applications and Web Applications which is used

by the end users in the Healthcare (Drug Development) industry and by various Internet Service

Providers. His research interests include Information Security, Digital File Encryption, Image

Encryption, Chatoic Cryptology, Image Processing, Steganography, Data Compression, Elliptic

Curve Cryptography, Mobile Security and Information Retrieval Systems. Currently he is

working with the light weight cryptography which can be applied to android devices.

