

Institute of Advanced Engineering and Science

International Journal of Information & Network Security (IJINS)

Vol.4, No.1, Feburary 2015, pp. 1~10

ISSN: 2089-3299  1

Journal homepage: http://iaesjournal.com/online/index.php/ IJINS

w w w . i a e s j o u r n a l . c o m

Secure hash functions using programmable cellular automata

Alaa Eddine Belfedhal
1
 and Kamel Mohamed Faraoun

2

Computer Sciences Department, Djillali Liabes University of Sidi Bel Abbes, Algeria
1belfedhal.alaa@gmail.com , 2 kamel_mh@yahoo.fr

Article Info ABSTRACT

Article history:

Received Dec 12th, 2014

Revised Jan 20th, 2015

Accepted Feb 26th, 2015

 We propose a simple and efficient hash function based on programmable

elementary cellular automata. Cryptographic hash functions are important

building blocks for many cryptographic protocols such as authentication and

integrity verification. They have recently brought an exceptional research

interest, especially after the increasing number of attacks against the widely

used functions as MD5, SHA-1 and RIPEMD. Hence, the need to consider

new hash functions design and conception strategies becomes crucial. The

proposed hash function is built using elementary cellular automata that are

very suitable for cryptographic applications, due to their chaotic and complex

behavior derived from simple rules interaction. The function is evaluated

using several statistical tests, while obtained results demonstrate very

admissible cryptographic proprieties such as confusion, diffusion capability

and high sensitivity to input changes. Furthermore, the hashing scheme can

be easily implemented through software or hardware, and provides very

competitive running performances.

Keyword:

Cryptographic Hash Function

Programmable Cellular

Automata

Cellular Automata rule

Pseudo-randomness

Avalanche effect

Copyright @ 2015 Insitute of Advanced Engineeering and Science.

All rights reserved.

Corresponding Author:

Alaa Eddine Belfedhal,

Computer Sciences Department,

Djillali Liabes University of Sidi Bel Abbes, Algeria

Email: belfedhal.alaa@gmail.com

1. INTRODUCTION

Cryptographic hash functions are important cryptographic primitives. They compute a digest of a

message which is a short, fixed-length bitstring. For a particular message with an arbitrary length, the

message digest, or hash value, can be seen as the fingerprint of a message, i.e., a unique representation of a

message. Unlike all other cryptographic algorithms, hash functions do not need a key in order to compute a

message's hash, except some specific implementations named keyed hash functions that are used for specific

signature scenarios. The use of hash functions in cryptography is manifold: Hash functions are an essential

part of digital signature schemes and message authentication codes (MACs). Hash functions are also widely

used for other cryptographic applications, e.g., for storing of password hashes or key derivation [1].

From a structural point of view, cryptographic hash functions may be categorized into three

main classes based on the nature of the operations performed in their internal compression functions: the first

class functions uses a block cipher as compression functions [2] and [3], when the second class includes hash

functions based on difficult mathematical problems, such as discrete logarithm problem [4], factorization

problem [5] and the problem of finding cycles in expander graphs [6].

Another recently emerging class covers dedicated hash functions designed especially with speed and

reliability in mind [7]. Among dedicated functions, there ones based on chaotic maps that exhibits chaotic

and complex behaviors with high sensitivity to initial conditions’ variations. Examples of such maps include

the logistic map proposed to build a hashing schema in [8], and the tent map used for same purposes in [9].

Cellular automata (CA) have recently also been used to design dedicated hash functions. Cellular

automata are very appropriate to design hash functions with a low hardware and software complexity because

of their logical operation attributes [7]. CAs also provide high level of parallelism and therefore, are able to

  ISSN: 2089-3299

IJINS Vol. 4, No. 1, February 2015 : 1 – 10

2

achieve high hashing speeds [10]. The main approaches using CA to construct hash functions are discussed

in detail in related works section.

In this paper, we propose a new cryptographic hash function using programmable CA conjointly

with the Davies-Mayer construction [11] to define compression function, when Merkle-Damgard variant

construction is adopted as a domain extension algorithm. The proposed scheme is shown experimentally to

be robust against the main hashing attacks, and evaluated with respect to the strict avalanche criterion and the

pseudo-randomness of the hashing output considered for large scale streams.

The remaining of the paper is organized as follows: Section 2 introduces relevant background about

cryptographic hash functions, CA preliminaries with related works. Section 3 details the proposed hash

function construction, when Section 4 present the performed experiments with corresponding obtained

results. Finally conclusions are drawn in Section 5.

2. Cryptographic hash functions and cellular automata

In the following, we introduce the basic necessary definitions related to cryptographic hash

functions and cellular automata, and then we briefly describe the main works with relevance to the

construction of CA-based hash functions.

2.1. Cryptographic Hash Functions

Formally speaking, a hash function H is a deterministic and efficient algorithm that maps an

arbitrary length binary message M to some fixed length (typically 128, 160, 256 or 512 bits) fingerprint h [1].

 { } { }

 (1)

To be considered as cryptographic, a hash function should resist to the three main attacks: the pre-

image attack, the second pre-image attack and the collision attack. The pre-image attack consists for a given

hash value h to find the corresponding message M such that H(M)=h. The second pre-image attack succeed if

for a given message M and a given hash value h=H(M) we can find a message M≠M' such that H(M')=h.

Finally, the collision attack aim to find two arbitrary distinct messages M and M' such that H(M)=H(M').

Using a brute-force attack, pre-images and 2nd pre-images attacks succeed deterministically after 2n

call to the function H, when a collision is very leaky to succeed using only 2n/2 call to H according to the

birthday paradox theorem. It is usually the goal in the design of a cryptographic hash functions that no

attacks perform better than the brute-force attack.

In general, it is not always possible to get a formal proof of resistance to such attacks. But in

contrast, some statistical properties are easily verifiable to show that a given hash function has a good

cryptographic level of security. A hash function that behaves like a pseudo-random function and satisfies the

avalanche effect is generally considered to be secure and can be used safely for cryptographic purposes. Such

statistical properties are easy to check, and then enable a fast and acceptable evaluation tool to validate the

hash functions design.

Cryptographic hash functions have generally two main independent components: the mode of

operation (a domain extender algorithm) and the compression function. Most popular hash functions are

based on iterating a compression function that processes a fixed number of bits. The message to be hashed is

split into blocks of a certain length where the last block is possibly padded with extra bits.

Let h:{0,1}nx{0,1}L{0,1}n denotes a compression function, where n and L are positive integers,

and let M=m0|m1|.....|mk be the message to be hashed, where |mi|=L for 0≤ i≤ k. The hash value is then

defined to be hk, where hi=h(hi-1,mi) defines the chaining variables.

A hash function can be either keyed or non-keyed one depending on the corresponding intended use. For

non-keyed functions addressed in the present work, a fixed initialization vector IV is used to define the value

h0. If the message M to be hashed cannot be split into blocks of equal length n, (if the last block consists of

less than n bits), then a collision-free padding rule should be used [12].

It has been shown that attack on a given hash function implies similar attack on the corresponding

used compression function. So in order to show the hash function’s resistance to the collision, it suffices to

show that the property is verified for the compression function. When iterating a compression function that

provides collision resistance property we can achieve a global collision resistance, and guarantee a perfect

avalanche effect satisfaction by the constructed hash function.

IJINS ISSN: 2089-3299 

Secure hash functions using programmable cellular automata (Alaa Eddine Belfedhal)

3

2.2. Cellular automata preliminaries

Cellular Automata are dynamical systems in which space and time are discrete. They consist of

collections of cells organized in a grid, when each cell has a corresponding current state. The states of the

cells evolve over time depending on their current states and the states of the neighboring cells, according to a

local and identical interaction rule in the case of uniform CAs, or different interaction rules in the case of

non-uniform CAs [13].

CA were originally used by von Neumann [14] while he was studying self-reproducing systems and

then popularized by Wolfram’s substantial work in this area [15], who observed that based on simple rules,

very complex behaviors can be obtained. Wolfram pioneered the investigation of CA as mathematical models

for self-organizing statistical systems and suggested the use of elementary CAs, which are simple 1-

dimensional linearly connected array of n cells, usually referred to a 3-neighborhood CAs. Each cell in the

array takes a discrete state s equal to 0 or 1. If a configuration of the CA at a time step t is defined by the

binary vector Ct, and the ith cell’s state is denoted by (Ct)i , then the transition function f is used to determine

the next state of each cell from a neighborhood’s corresponding configuration. Cell’s states are updated in

parallel with respect to each other cells using the transition function in each time step. The next state of a cell

a time t+1 is only influenced by its own state and the states of its left and right neighbors at time t. The

configuration Ct+1 at time t+1 can be computed by:

(2) (Ct+1)i=f ((Ct)i-1, (C
t)i, (C

t)i+1) , i=0…n-1

where (Ct)i-1, (C
t)i and (Ct)i+1 are the states of the left neighbor, self and right neighbor of the ith cell

at time t. A cellular automaton with 2 states and a neighborhood’s radius equal to 1 (3 cells) has 23=8

possible neighborhood’s configurations. If the set of all possible configurations is expressed using a truth

table, the decimal equivalent of its sequence output is referred as a ―Rule‖ [15], and by the way the transition

rules length is equal 8 and a total of 28=256 CA local rules can be used. Table 1 illustrates an example of two

elementary rules defined by the corresponding truth tables.

Table 1. Truth table of two different elementary CA transition rules (Rules 30 and

If the same rule applies to all cells in a CA, the CA is named uniform or regular CA, whereas if

different rules apply to different cells, it is named a hybrid (or non-uniform) CA. A programmable CA (PCA)

is a hybrid CA controlled by a number of signals such that different rules can be generated.

Cellular automata have several properties that favor their use as basis for the design of hash

functions. Their chaotic, complex and unpredictable behavior of some transition rules enables their effective

use to design safe and reliable hash functions. The simplicity of their implementations and their parallel

nature makes them suitable as a basis for fast compression functions.

2.3. Cellular automata for hash functions : related works

Cellular automata have been widely used recently to construct cryptographic primitives. They have

been used for the construction of symmetric cryptosystems, public key cryptosystems, secret sharing

schemas and hash functions. The first cryptographic application of CA was initiated by Wolfram [16] that

describes a stream-based cipher using the elementary CA rule 30. The CA was used as a pseudorandom

numbers generator to produce statistically good sequences used to cipher plain data by the Vernam ciphering

model. CAs were also used for block-ciphers constructions using reversible and irreversible rules [17], and

also to build public-key cryptosystems by exploiting two-dimensional CAs reversibility problem [18].

In [19], Damgard was the first to propose a hash function based on CAs, he used Wolfram’s

pseudorandom bit generation’s scheme to design a compression function, but his proposal has been

cryptanalysed by Daemen et al. in [20] who, in turn, proposed a framework of collision free hash functions

based on CA, named CellHash. The same authors proposed later an improved version named SubHash in

Neighborhood’s configuration at

time t
111 110 101 100 011 010 001 000

Next value of the central cell at time

t+1 (Rule 30)
0 0 0 1 1 1 1 0

Next value of the central cell at time

t+1 (Rule 2)
0 0 0 0 0 0 1 0

  ISSN: 2089-3299

IJINS Vol. 4, No. 1, February 2015 : 1 – 10

4

[21]. Both CellHash and SubHash are hardware-oriented so making extremely high speed possible, but

unfortunately, the two schemas were cryptanalysed later in [22].

Another CA-based hash function has been proposed by Mihaljevic, et al. in [23] , where they

describe a family of fast dedicated one-way hash functions using linear CA over GF(q). The proposal

is an extension of the bit’s oriented hashing proposed earlier in [24], enhanced by employing the approved

model of iterative hash function with compression and output’s functions: the compression function is one of

the Davies-Meyer types employing CA, when the output function was a key generator based on CA over

GF(q). In [25] Dasgupta, et al. proposed a CA based scheme for message authentication by investigating a

particular class of non-group CA that can be employed to generate an efficient message authentication

function. Two-dimensional CA was also proposed as base of construction of hash functions in [26].

More recently, Jun-Cheol proposed a one-way hash function using linear and nonlinear CAs [7].

Norziana et al. proposed an alternative hash function based on CA rules 30, 134 and Omega-Flip Network in

[10], then proposed another hash function in [13] named STITCH-256 using balanced CA elementary rules

like rules: 29, 39 and 27, and diffusion functions to implement the compression function.

3. The proposed hashing scheme

In this section, we present the proposed new CA-based cryptographic hash function. The proposed

function follows iterative hash model inspired from the Damgard's one presented in [19], and uses two

internal functions namely: a compression function C and a transformation function C. The former employs

programmable CA with 4 rules (30, 90, 105 and 150), when the later T uses an hybrid cellular automaton

with rule 30 and rule 105. Both message blocks and hash value are 256 bit binary strings.

3.1. The mode of operation

In the proposed hashing schema, we use a variation of Merkle-Damgard contraction. The proposed

algorithm requires a padding function (in such a way that the length of the message becomes a multiple of

256 bit) for which the last 64 bits encode the length of the message M to be hashed. The padded message is

then divided into blocks Mi (i=1...k) with |Mi|=256 bits. The algorithm requires also a fixed initialization

vector : IV{0,1}256.

The compression function C is then iterated for k times. C takes as inputs a block message Mi and a

chaining variable hi-1, to produces a 256 bit string as output. This output string is XORed with the output of a

transformation function T applied to the block message Mi to form the next chaining variable hi. Figure 1

illustrates a pictorial representation of the proposed hashing scheme.

Figure 1. Pictorial representation of the proposed schema.

3.2. The compression and transformation functions

To construct the compression function, we use an elementary programmable CA (PCA) with 4 rules,

namely the rules: 30, 90, 105, 150 (As there are many literature works that have studied the properties of

different CA rules, we use only rules that have been proven to have good pseudo-random proprieties).

We firstly define a function F that takes as input a block message Mi and a chaining variable hi-1, to

produce an output string f on 256 bits like follows:

 { } { } { }

IJINS ISSN: 2089-3299 

Secure hash functions using programmable cellular automata (Alaa Eddine Belfedhal)

5

 (2)

The function F is defined like the following: a PCA of 256 bit length is initially loaded with the

message block Mi. Additional 256 bits from chaining variable are doubled to form a 512 bit string S (i.e. S =

hi-1|hi-1). The bits from S are used with the number of the current iteration to control the rule configuration of

the individual CA cells. Each 2 bits of S control one cell rule (the bits j and j+1 control the rule of the cell

number j/2) conjointly with the remainder of the iteration number modulo 4. The control logic of ht

proposed PCA is described in Table 2.

Table2. Control logic of the PCA

2 bits from

Mi

i mod 4

0 1 2 3

00 Rule 30 Rule 90 Rule 105 Rule 150

01 Rule 90 Rule 30 Rule 150 Rule 105

10 Rule 105 Rule 150 Rule 30 Rule 90

11 Rule 150 Rule 105 Rule 90 Rule 30

The CA is then iterated for n times. The value of the parameter n defining the number of iterations

may be fixed according to the desired ratio of speed/reliability performances. The output of F is the defined

by the final PCA state.

The compression function C is then defined using the function F as follows:

 { } { } { }
 (3)

The transformation T takes as input a block message of 265 bit length and produces an output string t of 256

bit that is XORed with the compression function output.

The transformation function is defined as follows: A hybrid CA with rules 30 and 105 (rules are

applied in alternation i.e. 30, 105, 30….) is initially loaded with the message block Mi. The CA is iterated 50

times to obtain an intermediate configuration, then iterated another 256 times to form a 256 by 256 bit

square. The diagonal of this square is then taken as output of T. Figure. 3 illustrates pictorial specification of

the transformation T operations mechanism.

Figure 2. Pictorial description of the transformation function T

The transformation function T is used to obtain the next chaining variable hi by :

 (4)

  ISSN: 2089-3299

IJINS Vol. 4, No. 1, February 2015 : 1 – 10

6

Using the described scheme, the proposed hash function can take any message M of arbitrary length

as input, decompose it into consecutive blocs Mi, and produce the corresponding hash vale H(M). The

proposed function is benchmarked with respect to several performances tests with several experiments

illustrated in the following section.

4. Performances evaluations and obtained results

As explained above, it is not always possible to formally proof the resistance of a given hash

function to common attacks. In contrast, several statistical properties can be checked in order to show that the

function provides good cryptographic level of security. Pseudo-random behavior and avalanche effect are

generally considered as good security's indicators of a hash function. In this section, we perform several

statistical experiments on the proposed hashing scheme. We also show that best computational performances

can be achieved by the proposed scheme with respect to existing models.

4.1. The avalanche and strict avalanche criterions

Avalanche effect is a desirable property for cryptographic hash functions, that tries to reflect the

idea of high-nonlinearity [27]: a little change in the input (flipping one single bit) produce a significant

change of the output (approximately half of the bits are flipped). Formally, if a function F have the

avalanche effect, then the Hamming distance between its output on a random inputted binary string x and the

output obtained when randomly changing one bit of x should be, on average, half of the output size [28].

This effect that tries to abstract the intuitive idea of high nonlinearity: very small difference in the input must

produce high changes in the output, hence an avalanche of changes.

Mathematically, F:{0,1}m{0,1}n has the avalanche effect if it holds the following :

 { } (())

 (5)

When Hamming(x,y) denotes the Hamming distance between the two n-bits blocks x and y. Figure

3 shows results of the avalanche effect test performed on the proposed hash function, using a set of 10000

pair of arbitrary messages Mi and Mi' such that Hamming(Mi, Mi')=1. Obtained results shows that the

hamming distances between the hash values (i.e. Hamming(H(Mi),H(Mi')) are concentrated around the value

128, which indicates that the hash function has a good avalanche effect.

Figure 3. Obtained distribution of Hamming distances between hashes of random messages and hashes of

theirs one-bit-flipped alterations.

 Another more accurate and demanding nonlinearity measurement is the so called strict avalanche

criterion [29] which, in particular, implies the avalanche effect. The Strict avalanche criterion (SAC) is a

more demanding property that was originally presented by as a generalization of the avalanche effect to

measure the quantity of confusion and diffusion in substitution boxes (s-boxes). Formally, a function F is said

to satisfy the SAC if, whenever a single input bit is flipped, each of the output bits must change with a

probability of one half. This implies that the distribution of hamming distances between outputs that have

similar inputs (differs in one bit) should flow a binomial distribution. Mathematically, the SAC is described

by [28]:

 { } () (

) (6)

IJINS ISSN: 2089-3299 

Secure hash functions using programmable cellular automata (Alaa Eddine Belfedhal)

7

Where B (1/2, n) denotes binomial distribution with parameters 1/2 and n. This definition also tries

to abstract the more general concept of independence of the output from the input. An ideal hash function F

will resemble a perfect random function where inputs and outputs are statistically unrelated [30].

In order to evaluate the proposed hash function with respect to the SAC, the following experiment have been

conducted: the 256 elements of an integer's vector V (corresponding each one to a bit position of the hash

function's output) are initialized firstly to 0. A set of 1000 random messages with arbitrary length are then

generated, and their corresponding hash values H(M) are computed. For each one of these messages, only

one bit is randomly flipped getting a new message M', that is also hashed to obtain a new hash value H(M').

The hamming distance Hamming(H(M),H(M')) is calculated, and the result is used to determine the element

of V to be incremented (i.e. V[Hamming(H(M),H(M'))] ++). This operation is repeated 1000 times for each

message.

Finally, the values of the vector V elements are divided by the total number of performed

experiments (equal to 1000*1000=106) in order to perform a normalization of the computed distribution. The

obtained values represents the distribution of hamming distances, that is compared to the binomial

distribution as plotted in Figure 4.

Figure 4. Experimental hamming distances distribution vs. Theoretical binomial distribution.

The distance between the observed distribution of the Hamming distances and their theoretical distribution

under perfect Strict Avalanche Criterion hypothesis B (1/2, n), has been also measured by means of a chi-

square 2 goodness-of-fit test [30]. The chi-square measurement is a statistical test that allows verifying the

adequacy of a data set to a probability distribution by using the following formula [27]:

 ∑

 (7)

Using the distribution values obtained in the experiment described above, the value of the 2

measurement have been computed an found to be equal to 0,005465. Using the probability =0.01 as our

critical threshold, the hypothesis of equivalence between the two distributions is accepted if the 2 value is

less than the quantile 255,0.01=310.45. It is clear that the obtained 2 is negligible with respect to the quantile

value, an consequently, the null hypothesis is accepted and the hamming distribution of the proposed hash

function is then following a binomial distribution B(½,256). Results of the SAC test shows that the hash

function provides good avalanche effect criterion, which is one of the most important features of secure

cryptographic hash functions.

4.2. Randomness statistical tests

Cryptographic primitives and especially hash functions should act like pseudorandom functions to

avoid statistical attacks; therefore the output of a secure hash function must be statistically indistinguishable

from the output of a random function. We performed several statistical randomness on the output of the

proposed hash function in order to show that it provides best randomness properties.

In the performed experiment, the hash function has been used as a pseudo-number generator to

create a data stream of 10Mb. The stream is generated using a counter mode scheme applied using the hash

function on an initial random integer seed S and then calculating the values H(S),H(S+1),.....,H(S+327680)

each one on 256bit. The resulting outputs are finally concatenated to form a data stream.

  ISSN: 2089-3299

IJINS Vol. 4, No. 1, February 2015 : 1 – 10

8

The produced stream is analyzed statistically using both Diehard [31] and ENT [32] statistical Tests

batteries, and then obtained results are averaged and reported in Tables 3 and 4.

Table 3. Results of the DIEHARD tests battery applied on designed hash function’s output

It is clear from presented results that the binary stream generated by the hash function has

successfully passed all DIEHARD and ENT tests. We can conclude that the function has a good pseudo-

random behavior and can as a result be considered to be statistically indistinguishable from random function,

which a principal characteristic of a secure hashing scheme.

Table 4. Results of the ENT tests battery applied on the designed hash function’s output.

4.3. Performances analysis of the designed function

Cellular automata uses simple binary operations. Therefore CA-based primitives can achieve very high speed

in both hardware and software implementations. In the present work, the proposed hash function has been

implemented using Microsoft Visual C++, while performance's experiments were performed using an Intel

Core i5 (2.5 GHz) microprocessor platform. Table 5 shows a comparison between the hash function and

widely used ones implemented by the Crypto++ library using Microsoft Visual C++ [33]. It is clear that the

designed function achieves very competitive speeds with respect to other standards, and we assume that it

can achieve mush better rates if hardware implementation is used.

Test Name P-value Interpretation

Birthday Spacing 0.451552 Pass

Overlapping 5-permutation 0.654729 Pass

Rank test for 31x31 binary matrices 0.64841 Pass

Rank test for 32x32 binary matrices 0.894523 Pass

Rank test for 6x8 binary matrices 0.562742 Pass

BITSTREAM TEST 0.329124 Pass

OPSO Test 0.42485 Pass

OQSO Test 0.642714 Pass

DNA Test 0.42839 Pass

Count the 1s in a Stream of Bytes 0.69275 Pass

Count the 1s in Specific Bytes 0.39258 Pass

Parking Lot Test 0.512293 Pass

Minimum Distance Test 0.64942 Pass

Random Spheres Test 0.35862 Pass

The Squeeze Test 0.43175 Pass

Overlapping Sums Test 0.58441 Pass

Runs Up and Down Test 0.74349 Pass

The Craps Test 0. 83457 Pass

Test Name Value Norm

Entropy 7.997982 8.0

Optimum compression 0.000003 0.0

Arithmetic mean value of data bytes 127.5586 127.5 = random

Monte Carlo value for 3.140865524

Serial correlation coefficient 0.000347 totally uncorrelated = 0.0

IJINS ISSN: 2089-3299 

Secure hash functions using programmable cellular automata (Alaa Eddine Belfedhal)

9

Table 5. Speed performances comparison with respect to some known hash functions

5. Conclusions

In this paper, we propose a cryptographic hash function based on cellular automata. The proposed

function uses two internals, namely: a compression function based on programmable cellular automata

controlled by the chaining variable bits, and a transformation function construct from a hybrid cellular

automaton with rules number 30, and 105. The proposed scheme has been experimentally analyzed with

respect to several statistical test, while obtained results shows that the proposed function provides good

cryptographic properties such as pseudo-random behavior and sensitivity to the input changes. In addition,

the function it is simple, fast, and can be easily implemented through software or hardware. Performances

evaluations show that extremely optimal performances are achieved by the function with respect to existing

standards, and we presume that better performances can be obtained if hardware implementation is adopted

due to the inherent parallelism of cellular automata.

REFERENCES

1. Naor, M., & Yung, M. (1989, February). Universal one-way hash functions and their cryptographic applications.

In Proceedings of the twenty-first annual ACM symposium on Theory of computing (pp. 33-43). ACM.

2. Preneel B, Govaerts R, and Vandewalle J. (1993). Hash Functions Based on Block Ciphers: A Synthetic Approach.

In Crypto ’93, volume 773 of LNCS, pages 368–378. Springer-Verlag.

3. Black J, Rogaway P, and Shrimpton T. (2002). Black-Box Analysis of the Block-Cipher-Based Hash-Function

Constructions from PGV. In Crypto’02, volume 2442 of LNCS, pages 320–335. Springer-Verlag.

4. Buchmann J and Paulus S. (1997). A One Way Function Based on Ideal Arithmetic in Number Fields. In Crypto

’97, volume 1294 of LNCS, pages 385–394. Springer-Verlag.

5. Contini S, Lenstra A, and Steinfeld R. (2006). VSH, an Efficient and Provable Collision- Resistant Hash Function.

In Eurocrypt ’06, volume 4004 of LNCS, pages 165–182. Springer-Verlag.

6. Charles D, Lauter K, and Goren E. (2007). Cryptographic Hash Functions from Expander Graphs. Journal of

Cryptology, 22(1):93–113.

7. Jeon J-C. (2013) Analysis of Hash Functions and Cellular Automata Based Schemes, International Journal of

Security and Its Applications Vol. 7, No. 3, May, 2013.

8. Maqableh M, Samsudin A, and Alia M. (2008) New Hash Function Based on Chaos Theory (CHA-1). International

Journal of Computer Science and Network Security, 8(2):20–27.

9. Xan Yi . (2005) Hash Function Based on Chaotic Tent Maps. IEEE Transactions on Express Briefs, 52(6):354–357.

10. Norziana J, Ramlan M, Muhammad Reza Z, Nur Izura U and Zuriati Ahmad Z. (2012) A New Cryptographic Hash

Function Based on Cellular Automata Rules 30, 134 and Omega-Flip Network. International Proceedings of

Computer Science & Information Tech. Vol. 27, p163

11. Menezes A, Oorschot P and Vanstone S. (1996). Handbook of Applied Cryptography, chapter Hash Functions and

Data Integrity, pages 321–384. CRC Press.

12. NIST. (2002) Federal Information Processing Standard (FIPS) Publication 180-2, Secure Hash Standard

(SHS), U.S. Doc/NIST, Available from http://csrc.nist.gov/publications/fips/fips180-2/fips 180-2.pdf.

13. Jamil N, Mahmood R, Z'aba M R, Udzir N I and Zukarnaen Z A. (2012a). A New Cryptographic Hash Function

Based on Cellular Automata Rules 30, 134 and Omega-Flip Network International Conference on Information and

Computer Networks (ICICN 2012) IPCSIT vol. 27 (2012) IACSIT Press, Singapore.

Hash function Speed (MB/s)

MD5 406

SHA-1 158

SHA-256 143

SHA-512 82

RIPEMD-128 240

RIPEMD-256 195

RIPEMD-320 104

Whirlpool 80

Proposed function (256 bit) 138

  ISSN: 2089-3299

IJINS Vol. 4, No. 1, February 2015 : 1 – 10

10

14. Neumann J V. (1987). The World of Physics: A Small Library of the Literature of Physics from Antiquity to the

Present, chapter The General and Logical Theory of Automata, pages 606–607. Simon and Schuster, New York.

15. Wolfram S. (2002). A New Kind of Science. Wolfram Media.

16. Wolfram S. (1985). Cryptography with Cellular Automata in Advances in Cryptology : Crypto’85 Proceedings.

LNCS 218. Springer 429-432.

17. Chai Z, Cao Z, and Zhou Y. (2005). Encryption Based on Reversible Second-Order Cellular Automata. ISPA

Workshops, LNCS 3759, pp. 350–358.

18. Clarridge A and Salomaa K. (2009). A Cryptosystem Based on the Composition of Reversible Cellular Automata.

LATA 2009, LNCS 5457, pp. 314–325.

19. Damgard I. (1989). A Design Principle for Hash Functions. In Crypto ’89, volume 435 of LNCS, pages 416–427.

Springer-Verlag.

20. Daemen J, Govaerts R, and Vandewalle J. (1991). A Framework for the Design of One-Way Hash Functions

Including Cryptanalysis of Damgard’s One-Way Function Based on a Cellular Automaton. In Asiacrypt ’91, volume

739 of LNCS, pages 82–96. Springer-Verlag.

21. Daemen J, Govaerts R, and Vandewalle J. (1992) A hardware design model for cryptographic algorithms, Computer

Security – ESORICS 92, Proc. Second European Symposium on Research in Computer Security, LNCS 648,

Springer-Verlag, 1992, pp. 419–434.

22. Chang D. (2006) Preimage Attacks on CellHash, SubHash and Strengthened Versions of CellHash and SubHash.

Cryptology ePrint Archive, Report 2006/412. (eprint.iacr.org/2006/412).

23. Mihaljevic M, Zheng Y, Imai H. (1999). A Fast Cryptographic Hash Function Based on Linear Cellular Automata

over GF(q). Special Section on Cryptography and Information Security. IEICE TRANS. FUNDAMENTALS,Vol.

E82. A ,NO. 1 January 1999.

24. Mihaljevic M, Zheng Y and Imai H. (1998). A Cellular Automaton Based Fast One-Way Hash Function Suitable for

Hardware Implementation, proceeding of PKC’98, LNCS 1431, (1998), pp. 217-233.

25. Dasgupta P, Chattopadhyay S and Sengupta I. (2001). Theory and Application of Non-group Cellular Automata for

Message Authentication, Journal of Systems Architecture, vol. 47, no. 55, pp. 383-404.

26. Hirose S and Yoshida S. (1997). A one-way hash function based on a two-dimensional cellular automaton, The 20th

Symposium on Information Theory and Its Applications (SITA97), Matsuyama, Japan, Dec. 1997, Proc. vol. 1, pp.

213–216.

27. Webster A.F and Tavares S.E (1985). On the design of s-boxes, Lecture notes in computer sciences; 218 on

Advances in cryptology—CRYPTO 85, New York, NY, USA, pp.523–534, Springer-Verlag New York, Inc.

28. Castroa J C H, Sierrab J M, Sezneca A, Izquierdoa A and Ribagordaa A. (2005). The strict avalanche criterion

randomness test. Mathematics and Computers in Simulation 68, 1–7.

29. Forre R. (1990). The strict avalanche criterion: spectral properties of booleans functions and an extended definition.

Advances in cryptology, in: S. Goldwasser (Ed.), Crypto’88, Lecture Notes in Computer Science, vol. 403,

Springer-Verlag, 1990, pp. 450–468.

30. Doganaksoy A, Ege B, Ko¸cak O and Sulak F. (2010). Cryptographic Randomness Testing of Block Ciphers and

Hash Functions. IACR Cryptology ePrint Archive 2010: 564.

31. Marsaglia G. (1995). Diehard Battery of Tests of Randomness. http://www.stat.f su.edu/pub/diehard/

32. Walker J. (2008). ENT A Pseudorandom Number Sequence Test Program. http://www.fourmilab .ch/random/

33. Dai W (2013). Crypto++, http://www.cryptopp.com/

